
NISTIR 4987

DATABASE MANAGEMENT SYSTEMS
IN ENGINEERING

Katherine C. Morris

Mary Mitchell
Manufacturing Engineering Laboratory

Christopher Dabrowski

Elizabeth Fong
Computer Systems Laboratory

U.S. DEPARTMENT OF COMMERCE
Technology Administration
National Institute of Standards and Technology
Gaithersburg, Maryland 20899

December 1992

NISTIR 4987

DATABASE MANAGEMENT SYSTEMS
IN ENGINEERING

Katherine C. Morris

Mary Mitchell
Manufacturing Engineering Laboratory

Christopher Dabrowski

Elizabeth Fong
Computer Systems Laboratory

U.S. DEPARTMENT OF COMMERCE
Technology Administration
National Institute of Standards and Technology
Gaithersburg, Maryland 20899

December 1992

ABSTRACT

iii

DATABASE MANAGEMENT SYSTEMS IN
ENGINEERING

Katherine C. Morris

Mary Mitchell
Manufacturing Engineering Laboratory

Christopher Dabrowski

Elizabeth Fong
Computer Systems Laboratory

National Institute of Standards and Technology

Gaithersburg, Maryland 20899

ABSTRACT

Until recently the applicability of database technology to engineering systems has been limited.
Early database systems addressed large-scale data processing needs of easily automatable
applications. These applications were characterized by very uniform data and well understood
processing methods. Engineering applications, on the other hand, are characterized by highly
complex data with very variable structure. The need to represent engineering data has driven
advances in database technology.

Engineering domains also impose unique, new requirements on other aspects of database
technology. In particular, to support the evolutionary nature of the engineering environment,
recent developments in database technology have focused on the temporal dimensions of data
management. In addition, the present trend in manufacturing towards concurrent engineering
raises new considerations for the cooperative use of data in a distributed engineering
environment. All of these factors are reflected in the new generation of database systems and are
described in the article.

DATABASE MANAGEMENT SYSTEMS IN ENGINEERING

iv

This manuscript will appear in
The Encyclopedia of Software Engineering,
John Wiley & Sons, Inc. Publishers.

This document was produced by the
U.S. Government and is not subject to copyright.

Funding for the preparation of the manuscript was
provided in part by DARPA/SISTO — the
Defense Advanced Research Projects Agency/
Software & Intelligent Systems Technology Office.

TABLE OF CONTENTS

v

TABLE OF CONTENTS

ABSTRACT .. iii

TABLE OF CONTENTS ..v

INTRODUCTION ..1

 The Engineering Problem ...1

 The Need for Database Solutions for the Problems of Engineering2

 Using Database Technology in Engineering ..5

NATURE OF ENGINEERING DATA ..6

 The Conceptual Design ...9

 The Database Schema ...13

 The Physical Organization ..18

 Summary ...22

MANAGING CHANGES ..22

 Support for Versioning ...22

 Schema Evolution ...24

 Tools for Managing the Environment ...28

 Techniques for Schema Integration ..29

COOPERATIVE ENGINEERING ENVIRONMENT ..32

 Concurrency Control ...33

 Data Distribution ...35

CONCLUSION ...37

 State of the Art of Commercial Database Products ..38

 Standard Interfaces ...39

 The Future ...41

 Summary ...42

REFERENCES ...43

DATABASE MANAGEMENT SYSTEMS IN ENGINEERING

vi

INTRODUCTION

1

INTRODUCTION

Most engineering-related software addresses very specific problems. These problems are typically
computation intensive and very limited in scope. Until recently this approach has been an effec-
tive use of computer and human resources. However, in the future, engineering and manufactur-
ing processes will need more integrated product development environments. Both cultural and
procedural changes are needed to support the engineering environments of the future, and these
changes will require integrated software systems. Databases are essential for integrating software
and for reliably sharing data among diverse groups of people and applications. Database technol-
ogy will be an integral part of the emerging software environments.

In this article the application of database technology to engineering problems is examined for dif-
ferent levels of complexity within the computing environment. This introduction provides some
background on the topic and includes the description of an example that is used throughout the
article. In the first section on the NATURE OF ENGINEERING DATA, the use of database tech-
nology for stand-alone applications is considered. Mechanisms for data representation to support
engineering applications are particularly important for implementing engineering software. The
following section titled MANAGING CHANGES discusses database techniques for managing
changes within the software environment. The next section on the COOPERATIVE ENGINEER-
ING ENVIRONMENT discusses considerations for supporting multiple engineers working coop-
eratively. The state of database technology is discussed in the concluding section.

The Engineering Problem

The primary focus of engineering is on the creation of a product. The types of products that engi-
neers produce vary widely. But whether the product is a building, an airplane, an integrated cir-
cuit, or a computer device, many facets of its creation are similar with respect to the computing
technology needed to support the engineering process.

Automated control of the computing environment is needed to achieve a high-level of engineering
and manufacturing productivity. The amount of information available at a person’s finger tips
through a computer is growing beyond the ability of people to usefully absorb it. At the same time
the reliance of engineering and manufacturing processes on electronic information is also grow-
ing. The need to manage that environment is greater than ever, as is the potential to exploit access
to information. The technology which controls this environment is essential to improving engi-
neering and manufacturing processes.

The engineering and manufacturing process involves many different people and systems which
typically are distributed across a business enterprise and even between enterprises. For example,
in the engineering of a human-computer interface device, such as a mouse, one engineering group
establishes the user interface requirements, such as number of buttons, dimensions, size, and other
physical features of the mouse, while another group decides what type of material is suitable for
the product, and a different group is responsible for packaging the product. A wide variety of soft-
ware applications supports the design of a final product which incorporates the diverse perspec-
tives of different engineering teams. Consequently, the computing environment is very complex.

DATABASE MANAGEMENT SYSTEMS IN ENGINEERING

2

Throughout this article a casing for a mouse is used as an example of an engineered product. The
casing is part of the larger, consumer product — the mouse; however, the casing itself is also a
product, which is supplied to the maker of the mouse. Many different aspects of the mouse casing
are important to engineers developing the product:

• wire frame model representation: shape, dimensions, tolerances

• solid model representation: shape, mass, volume

• material: strength, durability, molding quality, thermal properties, elasticity

• product aspects: roles in assembly, identification, version, model number, serial num-
ber, lot number, color, packaging type

All these different aspects of the casing can be related through a conceptual model or schema.
Figure 1 illustrates the schema for a product such as a mouse casing. The schema describes the
types of information and the structure of the information needed to engineer a product. The exam-
ple is very general and simplifies the actual information which would be needed to represent the
complete information for a product. For instance, solid models and wire frame models each
require extensive and different data structures for their representations. These portions of the
schemas are omitted here to simplify the example.

The Need for Database Solutions for the Problems of Engineering

Many computationally intensive problems from a variety of engineering domains benefit from the
use of computer technology. The pocket calculator antiquated the slide rule, which only a genera-
tion ago was the primary tool of trade in many engineering domains. Similarly, problems of larger
scope have been addressed by software development teams. These groups of programmers typi-
cally implement a sub-system of a particular engineering discipline, such as the analysis of the
structural properties of a product or numerical-control optimization for manufacturing.

The multiplicity of computer-based support systems1 for engineering is indicative of the utility of
this approach for automating the engineering process. The limited scope of such sub-systems is
well suited for implementation in software because the problems are manageable. From the per-
spective of human understanding, these problems are a suitable size to automate since the pro-
cesses are well understood. From the perspective of managing software development, the
solutions to these problems are reasonable since the solutions can be implemented by a small soft-
ware development project.

The historical evolution of computing for engineering has resulted in islands of automation. Since
the specialized sub-systems are isolated from each other, each sub-system can be thought of as an
island in the process of building a final product. The challenge for the next generation of software

1. Computer-based support systems for engineering support any Computer-Aided operation or process and
are sometimes generically referred to as CAx systems. They include MCAD (Mechanical Computer-Aided
Design) e.g. drawing/drafting; ECAD (Electrical Computer-Aided Design), e.g. PCB (Printed Circuit
Board) layout; MCAE (Mechanical Computer-Aided Engineering), e.g. solids modeling; ECAE (Electrical
Computer-Aided Engineering), e.g. logic design; CAM (Computer-Aided Manufacturing), CIM (Computer-
Integrated Manufacturing), e.g. NC (Numerical Control) processing and photo-plotting.

INTRODUCTION

3

Figure 1: Example Data Model

Solid model

Product
Product
version

Product
definition

Material
specification

Higher
assembly usage

Work order

Design owner

Set [1:?]

Entity

Generalization

Association or
Aggregation

From Entity To Entity

KEY

Diagram notation is based on
Express-G (ISO11, 1992)

Product shape

Next usage
occurrence

Shape
representation

Assembly
component usage

Wire frame
model

DATABASE MANAGEMENT SYSTEMS IN ENGINEERING

4

engineers is to integrate these systems in meaningful ways. Their integration will lead to a
smoother automation of the entire engineering process.

One significant factor for improving the current product development process is the availability
and consistency of data throughout the process. Database technology provides mechanisms to
manage the consistency of data and to manage the availability of data as it progresses through the
product life-cycle. Therefore, database technology is a key component of the future software
environment for engineering.

Database technology has evolved in parallel to the evolution of software to support engineering.
Target applications for database technology have traditionally been data intensive business appli-
cations. In these applications relatively simple operations are performed on large volumes of data
with uniform structure. The term data processing refers to these types of applications. The engi-
neering world, on the other hand, is full of computationally intensive, logically complex applica-
tions requiring sophisticated representations.

Recent developments in database technology emphasize the need to provide general purpose sup-
port for the type of functions involved in the engineering process. Modern database systems are
evolving to support rich information models that address both data representation and data seman-
tics. In addition, more sophisticated operating environments for shared usage of information are
also emerging.

The typical software environment for engineering applications consists of independent programs
which share data using an operating system’s facilities for file storage. This mode of data sharing
has many shortcomings that have been addressed by database systems. Using the file system to
share data causes programs to be dependent on a fixed format for the data. In addition, operating
system environments only manage disk access to prevent the concurrent reading and writing of
files. Concurrency control at the logical level is necessary for control over extensive sharing of
data. Database systems extend operating systems’ mechanisms by providing more sophisticated
methods for managing concurrency at a logical level so that shared data does not become cor-
rupted.

Database systems improve on file systems in the following ways:

• Data access is based on logical structure rather than the physical structure of a data
file; therefore, applications do not need to parse files to access data and access can be
controlled at a logical level rather than by file.

• Database management systems provide mechanisms to optimize memory management
and disk storage.

• Rules for managing data consistency can be defined along with the structure of the
data so that data consistency is not the responsibility of every application program but
is uniformly maintained whenever data is accessed.

Despite the advantages of traditional database management systems over file systems, database
management systems have disadvantages that have made them unsuitable for engineering appli-
cations until recently (Encarnação, 1990). Traditionally the advantages of file systems over the
database management systems have been the speed of access to the data and user control over the

INTRODUCTION

5

data structures. These advantages are quickly disappearing as database access is organized around
more robust structures and as physical storage techniques evolve to better handle the dynamic
storage requirements of engineering systems (Bancilhon, 1990) (Cattell, 1992) (Kim, 1989).
Modern database systems offer these advantages over their predecessors:

• Integration with the programming languages used in engineering has made disk access
transparent to the application program and easier for the application programmer to
use.

• More flexible memory management techniques, designed to support complex data,
have improved the performance of database systems for engineering applications.

• New mechanisms to support flexible system integration and cooperative work have
been developed to address the particular needs of engineering.

Using Database Technology in Engineering

The use of database technology in the engineering computing environment differs from traditional
data processing. Many database features developed for the more traditional applications can be
transferred to the engineering environment. Some of these features take on new meaning, but
many are only viewed from a different perspective in engineering applications. Engineering appli-
cations impose unique requirements on, but also can particularly benefit from, the following
aspects of database technology:

• data representation

• change management

• cooperative processing

The initial application of database technology to the engineering computing environment solves
some of the simpler needs of engineering applications. Database management systems provide
data representation capabilities that decouple the logical format for data representation from an
inflexible file format. In this sense the database becomes a persistent data store which alleviates
the need for each application to parse a file into the program’s internal data structures.

The sophisticated data representation capabilities needed to support engineering systems have
only recently emerged in database systems. Engineering data contains complex interrelations and
data types for which general purpose support has not been available until recently. The typical
engineering application involves highly structured data and navigation of these structures is a
more common operation than repeated processing of a single data structure. The more recent
approaches to data representation provide a platform for direct expression and encoding of the
rich semantics of data with respect to representation and constraints. Techniques for data repre-
sentation which are particularly suitable for engineering are described in the section on the
NATURE OF ENGINEERING DATA.

Strategies for applying database technology to the broader category of needs for the entire engi-
neering computing environment are also emerging. These strategies address the coordination of
the evolution of a product’s development throughout its life-cycle. The introduction of database
technology into engineering processes can provide the opportunity to improve the entire way of
doing business for many industries. The technology is a key enabling factor for future directions

DATABASE MANAGEMENT SYSTEMS IN ENGINEERING

6

in engineering and manufacturing automation and it is essential for concurrent engineering, flexi-
ble manufacturing, and enterprise integration.

Changes within the engineering environment are an inherent part of the engineering process. As a
product is being developed, information needs are evolving along with it. Managing those
changes is a crucial service that can be supported by a database management system. A reliable
change management system is essential for reducing the time needed to engineer and manufacture
a quality product. Database support for managing the changes within the environment are
described in the section on MANAGING CHANGES.

Another factor in accelerating the product development process is the availability of data through-
out the process. The typical hardware working environment for engineering applications consists
of computing workstations and file systems that are connected by an electronic network. This
hardware topology does not inherently support shared access to data; therefore, additional meth-
ods are needed to support data sharing in this environment. Database management systems pro-
vide mechanisms for concurrency control and data distribution which make data quickly and
reliably available to a variety of groups cooperating in the development process. These techniques
are discussed in the section titled COOPERATIVE ENGINEERING ENVIRONMENT.

The remainder of this article discusses the relevance of database technology in engineering appli-
cations as outlined above. Database technology is useful for all types of engineering applications.
As the engineering computing environment increasingly grows more complex, the use of database
technology will play a more significant role in the engineering process than is the practice today.

NATURE OF ENGINEERING DATA

The nature of the data in engineering applications is quite different from business applications. In
engineering applications, data is characterized by highly complex interconnections between struc-
tures. The volume of the data, while potentially large, is a secondary consideration to the com-
plexity of the data. The following characteristics of engineering data illustrate its complexity:

• The structure of engineering data is non-uniform and unpredictable. Instances of
a single conceptual structure can vary in size and the data set representing an entire
product may consist of a large number of different data structures with relatively few
instances of each structure. For example, a complete description of a product includes
all aspects from physical design to material requirements to cost estimates. Many com-
plex structures are needed to represent such a diverse set of information. In addition,
for many of the structures there will be only one instance for each product and that
instance may be shared across products.

• Many of the commonly manipulated concepts require representations which are
networks of data structures and relationships. For example, the geometry needed to
represent a wire frame model is typically a collection of points with specific relation-
ships defined between them in meaningful ways for visualizing the connectivity of ele-
ments of the design. The wire frame representation of the shape is only one aspect of

NATURE OF ENGINEERING DATA

7

the product, which must be connected to other representations and associated informa-
tion.

• The interconnections between data structures are numerous and the same data
structure may participate in many roles. In the example, the mouse casing is a prod-
uct; however, from another perspective the casing is a component in the assembly of a
different product, the mouse.

• A large percentage of data is dependent on the existence of other data. For exam-
ple, a version of a product is dependent on an initial product specification.

• Completeness of a data set is relative to the stage in a product’s life-cycle. For
example, when a product is initially designed, it will not have manufacturing data
associated with it.

• The level of accuracy needed for numeric values can vary depending on the
semantics of the data and on the application using the data. For example, the appli-
cation used to verify that the mouse buttons can be assembled into the mouse casing
requires more precision than the application used to design the packaging for the
mouse casing.

• Complex rules exist for data instantiation. For example, when a product is defined
to be an assembly, it must have more than one component and each component will
have at least one mating condition which correlates to a mating condition in another
component.

• Algorithms may be required to ensure data integrity. For example, when a compo-
nent of an assembly is deleted, the structure of the assembly needs to be resolved.
When the design of the mouse casing is deleted, the mouse buttons are also affected. In
some circumstances the designs for the buttons could be removed from the database,
but in other cases, such as when the designs are used in other assemblies, they are still
needed.

• A single abstract concept may sometimes be represented at a detailed level in
more than one way. Different representations are required to support the different
functions for established engineering practices. For example, the shape representation
of a product can be a wire frame model, a simple raster image, or solid model. The
choice of representation is dependent on established practices for the type of product
and the task which uses the representation. To represent a product designed as an
assembly, a wire frame model of the components or a raster image of the assembly is
typically used to illustrate the shapes and spatial relationships of the components. A
solid model representation of the product’s shape might not be as useful in illustrating
the assembly.

• The evolution of a product or design is an important historical record. The history
provides a basis for reconstructing the rationale for design changes and is important
for improving the design process. For example, product liability can exist for decades;
therefore, an accurate design change history is an essential record.

In the mid 1980’s several authors (Katz, 1985) (Powell, 1988) (Rumble, 1984) (Staley, 1986) (Su,
1986) identified the lack of a suitable data modeling technology for engineering data. Database
design methods at that time focused on the data processing needs of business applications. The

DATABASE MANAGEMENT SYSTEMS IN ENGINEERING

8

data processing field concentrated on increasing the speed of processing large amounts of uniform
data with simple structures. The term impedance mismatch has come to refer to the mismatch
between the organization of data supported by traditional database management systems and the
organizational needs of engineering applications.1

Data modeling techniques emerging today specifically address the types of problems common to
engineering applications. The techniques combine features of traditional database design (Date,
1990) with knowledge representation techniques from the field of artificial intelligence (Sowa,
1991). The technology known as semantic or conceptual information modeling resulted from the
application of semantic networks to database design (Batini, 1992) (Brodie, 1984) (Mylopoulos,
1989).

Conceptual modeling produces a conceptual design of the entire contents of a database based on
the semantics of the data. From a conceptual design a database schema, suitable for a particular
database management system, is derived. The database schema is then evaluated with respect to
the usage patterns of the applications and refined to support their performance needs. Thus several
database schemas can support the same conceptual design. Briefly, the process of database design
can be viewed as going through three stages:

• Conceptual modeling includes requirements analysis and results in a conceptual
design.

• Database implementation results in a database schema for a database management sys-
tem.

• Physical design optimizes the way in which data is stored on physical media.

In the first stage, conceptual modeling, the complexity of the data is captured without the details
needed for computer implementation. This stage results in an understanding of requirements
which are then represented in a conceptual design. The conceptual design specifies, as fully as
possible, the semantics of the information involved in the process or processes being modeled. A
conceptual design is used to:

• develop agreements on requirements for specific engineering tasks,

• specify the design of information systems in terms familiar to an engineer, and

• develop integrated information requirements which are common to multiple engineer-
ing tasks.

In the next stage a database schema suitable for a computer implementation is developed. A con-
ceptual design is translated into a schema compatible with the targeted database management sys-
tem. The schema for a particular database management system is represented in a data definition
language. The application designer translates the conceptual design into the data definition lan-
guage for the database management system chosen for implementation.

Both data models—the conceptual design and the database schema — provide an abstraction of
the information needed for one or more application uses in the real-world. Certain details such as
the actual physical organization on computer hardware are deliberately omitted. Details on the

1. More generally the term impedance mismatch refers to the situation where the structures used to define a
database schema drastically differ from the data structures needed by the application.

NATURE OF ENGINEERING DATA

9

physical organization of the data are addressed in the physical database design. This separation of
concerns into different types of designs improves control over and planning for the information
system.

Characteristics of these data models as used for engineering databases are presented in this sec-
tion. A discussion of conceptual modeling is followed by a discussion of particular database con-
structs which are significant to engineering applications. Physical design is primarily controlled
by the database management system; however, some relevant aspects are discussed in the remain-
der of the section.

The Conceptual Design

An engineer’s perception of the information needed to perform a job differs from a computer’s
need to organize data into structures for efficient access and storage in a database. A conceptual
design reflects the engineer’s use of information. It presents information needs in understandable
terms while capturing details about the concepts and things relevant to an engineering application.
Just as the design of a product is important in communicating the functional aspects of the prod-
uct, a design for the engineering data is important in communicating the functional aspects of
information. Conceptual designs are particularly useful for developing engineering databases
because they provide:

• a method for managing the data model: models remain intellectually manageable
even as the application complexity increases,

• data independence: models are not tied to the physical organization of data,

• data stability: as an application is refined, models evolve without changes at the
detailed level affecting higher level abstractions,

• precision of expression: models accurately capture all the data relationships which
are important from perspective of a particular application,

• support for integration: the flexibility provided by abstraction mechanisms increases
the visibility of data structures and constraints and thereby facilitates integration of
different engineers’ perspectives on the data.

Several different approaches to conceptual modeling have been developed. The approaches
include techniques for developing and documenting a conceptual design. The techniques can be
divided into three categories: entity relationship or binary relationship models (Chen, 1976)
(Nijsen, 1989), semantic or extended semantic data models (Sowa, 1984) (Hull, 1987) (Peckham,
1988), and predicate logic models. (ISO-TC97, 1987) (Ullman, 1988).

Engineering organizations and software vendors commonly select one category of conceptual
modeling techniques and provide additional guidance on how to apply the techniques consistently
within their organization. Commercial computer-aided software engineering (CASE) systems are
available for some of these techniques. Additionally, these systems often generate database sche-
mas for one or more database management systems.

DATABASE MANAGEMENT SYSTEMS IN ENGINEERING

10

Conceptual modeling techniques (Brodie, 1984) (Borgida, 1985) provide mechanisms for repre-
senting both

• structural properties of data and

• constraints on data.

Techniques for representing structural properties include mechanisms for describing relationships
between data. Mechanisms for expressing constraints on data can capture information such as
acceptable domains for data values or required relationships between structures. The following
paragraphs describe some of the important mechanisms for supporting engineering applications.
These mechanisms are common to many of the conceptual modeling techniques.

Support for structural properties

Conceptual modeling techniques often provide four mechanisms for describing and managing the
complex structure of information (Brodie, 1984):

• classification

• association

• aggregation

• generalization

All conceptual modeling techniques provide classification mechanisms. Classification is used to
describe entities and the associations between entities. An entity is an abstraction of a real-world
concept which is significant to the application. An entity can have many instances where each
instance has different values but still has the same data structure. In the example a mouse casing is
one instance of a product; the mouse is another type of product. Casings may come in different
colors; those casings are also separate instances of the abstract concept of product. Thus an entity
represents an abstract class of things that share similar structure and function.

An entity may have attributes which represent the characteristics or properties of the entity. For
example, a mouse casing has a color; in Figure 2 color is shown to be an attribute of the product
definition entity. Instantiation of an entity refers to the declaration of a set of values for describing
a specific real-world occurrence of an entity. A particular mouse casing is black, whereas mouse
casings in general have a color.

Relationships between entities are represented in a number of different ways. Sometimes the con-
nection is loose when the entities exist independently of each other. These relationships are some-
times called associations or hasa relationships. For example, a product definition has a design
owner; however, both the product definition and the design owner exist as meaningful items with-
out the other. Networks of relationships between entities are formed by using association.

More complex relationships are represented using the techniques of aggregation and generaliza-
tion (Smith, 1977). Aggregation uses a single entity to represent the composition of several enti-
ties. Conversely, an entity may be decomposed into several entities. A reference to the aggregate
entity implies a reference to all of its component entities. This mechanism represents the relation-
ship where one entity is a part of another and is sometimes called the partof relationship. The
entity wire frame model can be thought of as an aggregate in Figure 1, since all the information

NATURE OF ENGINEERING DATA

11

Figure 2: Product Instance

Entity : Design Owner

Dabrowski
Christopher
materials engineer

Entity : Product

Mouse

Entity : Product

Mouse Button

Entity : Design Owner

Mitchell
Mary
product construction engineer

Entity : Product

Mouse Buttons

Entity : Product

Mouse Buttons

Entity : Product

Mouse Casing

Entity : Product
Definition

1/2” oval button for 3 but-
ton mouse
May 9, 1988
Black

Entity : Product
Definition

two-button mouse with
laser guidance mechanism
June 9, 1988
Black

Entity : Product
Definition

1/2” oval button for 3 but-
ton mouse
May 9, 1988
Black

Entity : Product Definition

Description: two-button mouse casing with
laser guidance mechanism

Creation Date: May 9, 1992

Color: Black

Material Type: 501-plastic

Entity : Product Version

Mouse Casing
#C10001

Entity : Product

Mouse Casing

Entity : Product Version

Laser casing
#CL0001

Entity : Work Order

Retrofit to accommo-
date laser guidance
mechanism.
August 11, 1991

X

X

X

ProductProduct version

Product Definition

Work order

Design owner

X

DATABASE MANAGEMENT SYSTEMS IN ENGINEERING

12

needed to represent a wire frame model is not included in this figure. Thus the entity is an abstrac-
tion representing all the entity types needed to compose a wire frame model. Generalization rep-
resents a relationship between two entities where one entity is a specialized kind of the other
entity; this relationship is called an isa relationship. The specialized entity inherits the characteris-
tics of the more general entity. Hierarchies of entities are formed using the generalization mecha-
nism.

In Figure 1 shape representation is shown to be a generalization of both solid model representa-
tion and wire frame model representation. Both solid model and wire frame model are representa-
tions for shapes. As shapes they share some common characteristics; however, they are very
different from each other in the details needed for their representations and in the functions they
support. For instance both representations describe a shape and can be used to estimate a prod-
uct’s dimensions, but in each case the method for calculating the dimensions is very different. In
this example the specialized entities are mutually exclusive (i.e. a solid model is not also a wire
frame model); however, specialized entities need not always be exclusive.

Support for constraints

Conceptual modeling techniques also support the specification of constraints on data. Constraints
aid in defining the semantics of data by imposing restrictions on the acceptable data values for
instances of entities and their attributes. Different conceptual modeling techniques support the
representation of different types of constraints. The following categories of constraints are com-
mon among several techniques:

• uniqueness: An attribute or group of attributes may be designated as a unique identi-
fier for an entity. This provides a way of identifying an instance of an entity by name.
For example, a mouse casing may be identifiable by a model number.

• existence dependence: To be meaningful some entities may be dependent on other
entities for their existence. For example, it would not be meaningful to have a product
version without a product!

• domains: The domain of attributes may be restricted. For example, the mouse casing
must be constructed out of a suitable material. Lead would not be an acceptable mate-
rial for the casing due to weight restrictions and molding quality, although lead may be
used for other parts of the mouse.

• optionality: In some cases optional information may be associated with an entity
without affecting the validity of the instances. Whether or not certain information is
optional may be captured in the conceptual design. For example, when a mouse casing
is initially designed, it may not have a release date assigned but the design is still valid.
However, when the design is released for production, then a release date is required for
the design to be valid.

• cardinality: Cardinality constrains how one entity relates to another by restricting the
number of instances of each entity that may participate in the relationship. The schema
in Figure 1 illustrates that a product’s shape may have several shape representations;
the label SET [1:?] indicates that at least one shape representation is needed for a
product. Such constraints contribute to the meaning of the relationships. Each shape
representation for the mouse casing represents the same product shape but in different
ways each with distinct purposes.

NATURE OF ENGINEERING DATA

13

Application Integration

Conceptual modeling is especially useful for integrating different applications. The semantic inte-
gration of data is necessary for different applications to share the same data. An integrated con-
ceptual design is developed based on analysis of the semantics of the data from the different
applications. The integrated conceptual design is the first step in enabling system interoperability.
The integration process provides understanding of the data used by the applications, identifies
areas in which data overlaps, and formulates consistent definitions to be used by the applications.
Techniques for semantic integration are described in the section on MANAGING CHANGES.

To illustrate the significance of application integration, consider the example of the mouse casing.
Suppose that changes need to be made to the casing due to a design flaw: the left button has a ten-
dency to break since people apply more force with the index finger. Several different applications
will be involved in resolving this problem. A design application captures usage requirements for
the casing. During the design process usage requirements, such as pressure and temperature
requirements, are initially recorded without decisions as to the specific material for the product.
Another application analyzes the materials that could be used to create the casing. This applica-
tion uses the requirements to select a suitable material for the casing. A third application is used to
analyze the entire design, including material, to determine whether the flaw has been corrected.
Such an analysis could use data from the design database, such as the shape of the mounting
mechanism and button, and from the materials database, such as strength and temperature toler-
ances for the selected material. Much of the data representing the design of the complete product
is not used at all in this analysis.

In order for all three applications to interoperate, common terminology is needed. The most basic
requirement for managing the data in this case is for a mechanism which relates the design and the
material used in the final product. However, a more thorough analysis will require more complex
interconnections. Ultimately all three applications should be related through a common database
schema.

The Database Schema

Typically a database schema is designed using one of the conceptual modeling techniques and
then translated for implementation. Translation to a database schema is a difficult process to effi-
ciently automate. Efficient implementation requires an understanding of the application area, the
usage patterns of the data, and the underlying data structures of the database management system.
These variables are unknown to the computer system; therefore, the results of an automated trans-
lation process are often not optimal. Some success at translation has been achieved, particularly in
the area of conceptual modeling for relational database schemas (Batini, 1992) (Loomis, 1986)
(Rumbaugh, 1991). But these techniques are most suitable for simple information systems and not
for the complex applications found in engineering.

A current area of research is for mechanisms to support the translation process for engineering
(Nixon, 1990). Translation mechanisms can be divided into two complementary approaches. The
first approach is to expand conceptual modeling techniques to capture a broader range of informa-
tion including more details about the anticipated use of the data. This approach requires identify-
ing what information is needed to optimize an implementation. However, the addition of such

DATABASE MANAGEMENT SYSTEMS IN ENGINEERING

14

information to a conceptual design complicates the already difficult design process and thereby
reduces manageability. The second approach is for the database management system to support
the structures used for conceptual modeling. While this does not make the translation process
automatic, it does simplify manual translation. An ultimate solution should combine the two
approaches.

The database schema consists of the structures and operations necessary to define the way data is
logically organized and accessed within a database management system. The technology used to
represent the database schema has evolved significantly in the last decade, resulting in the object-
oriented approach for database systems (Atkinson, 1989) (Bertino, 1991) (Cattell, 1992). Some of
the major categories of database technology are relational, network, and object-oriented (Date,
1990). Each of these approaches provides a different logical framework for describing and access-
ing data in a computer system. Commercial database management systems use one of these
approaches but may also combine features from more than one approach. Hence, an extended
relational database management system may include some features of the object-oriented as well
as relational approaches.

The object-oriented approach combines the traditional database approaches with concepts from
the fields of programming languages and artificial intelligence; hence many of the object-oriented
techniques more closely resemble approaches to conceptual modeling which share similar roots
(Zdonik, 1990). While application of the object-oriented paradigm is not limited to engineering, it
is the first generation of database design methodologies that is particularly well suited for engi-
neering.

The schema for a particular database management system is represented in a database language. A
database language consists of a data definition language for defining the database schema and a
data manipulation language, or query language, for accessing and manipulating data defined by
the schema. To effectively represent data in engineering applications, the database language used
by the system needs methods to represent the major mechanisms used in the conceptual design.
One method for representing these mechanisms is the use of classes in the database language.

Class and Association

A class is an implementation vehicle that corresponds to an entity in the conceptual design1. A
class is used to define the data structures and operations needed to support the conceptual entity in
a database implementation. The data structure used within a class may or may not directly reflect
that described within a conceptual entity. The implementation of a class may be optimized with
respect to data consistency or considerations about the usage of the class within a program or
query. A class defines a logical structure for storing instances of the conceptual entities within a
database management system. However, in deriving a database schema from a conceptual design
a one-to-one mapping between entities and classes does not necessarily produce the best represen-
tation (Ullman, 1988). For instance, groups of entities in the conceptual model can often be col-
lapsed into a single class definition for more efficient implementation or to enforce a tight
coupling between closely related concepts. The entities product version and change request in the

1. Different approaches to data representation use different terms to refer to the concept described here as
class. For example, in a relational database the term table is used.

NATURE OF ENGINEERING DATA

15

example in Figure 1 may be implemented as a single class since they are closely related ideas and
instances of either entity should not exist without an instance of the other entity. A new product
version should not be created without a change request, and a change request should generate a
new product version. Furthermore, an application often needs both sets of data at the same time;
in this case the usage of the data is reflected in the database schema by combining the entities into
a single class.

The concept of class is of central importance to engineering database models. A class is a general
template that provides structure for representing information. A class groups an entity’s attributes
in the database schema. The class represents attributes using simple data types such as integer,
floating point, and character types and identifies associations to other classes. An instance of a
class, often referred to as an object, is the set of data that represents one occurrence of the thing
described by the class. In Figure 2 the object “two-button mouse casing with laser guidance
mechanism” is an instance of the class product definition. In addition to providing a storage struc-
ture, a class may provide operations for accessing and manipulating the instance data.

Aggregation

In engineering applications aggregate relationships are very common. A product definition, as
shown in Figure 1 for example, is an aggregation of a product’s shape, material specification, and
components of an assembly. The relationship between the members of an aggregation and the
aggregate entity itself is an important consideration for managing data. In some cases, a member
of an aggregation may depend on the existence of the aggregate entity for its own existence. For
example, the existence of a product’s shape depends on the existence of the product’s definition.
However, in other cases, the aggregation implements the reuse of shared data. For example, mul-
tiple products can use the same material specification. The implementation and semantics of these
relationships may be supported in the database schema.

The dependence of a member of an aggregation on the aggregate entity, such as the product’s
shape on the product definition, is known as an existence dependency. The implementation of this
type of dependency may be encapsulated in a containment class definition. A containment class
contains the members of the aggregation. This concept is important for maintaining consistency
and for efficient implementation of a database system. For example, information about existence
dependencies can be used by the database management system to automatically remove depen-
dent instances when their containers are deleted. Similarly, the relationship indicates potential
access patterns for the data. For example, the wire frame representation of a product shape may
contain voluminous geometric data describing that shape. Thus when the wire frame representa-
tion is deleted or otherwise accessed, the same operation can be applied to all the associated geo-
metric data.

When aggregation is used to implement the reuse of components, the members of the aggregation
are not dependent on the aggregate entity. In contrast, the independence of the members may be
explicitly designed to provide for their reuse. In particular, multiple versions of a product may
share many of the same features. When the differences between versions are small, the most effi-
cient implementation is to keep relationships to unchanged aspects of the product and create new
objects to store the changes. In the mouse casing example, when a new product version is created
a new product definition is created. The new product definition maintains references to the

DATABASE MANAGEMENT SYSTEMS IN ENGINEERING

16

unchanged items in a previous version and creates items for changed aspects of the product. In
this case the aggregation is often implemented in the database schema as a simple association.

The existence dependency between an aggregate entity and its members can not always be gener-
alized for all instances. In other words, the relationship may differ between instances of a class.
For example, a product’s shape may not be meaningful without the existence of a product (as
described above); however, the product’s shape may be reused by multiple versions of a product.
When the product’s shape is being reused, then its existence is dependent on all the versions in
which it is used. In a data definition language this type of relationship is more complicated to rep-
resent. Therefore, many database management systems do not explicitly support such relation-
ships. An engineering database application will require additional mechanisms to support these
relationships.

Generalization

At the conceptual level, the mechanism of generalization and its complement, specialization, is
used to describe naturally occurring relationships between entities and provides a mechanism to
prevent redundant definitions. In the database schema specialization through inheritance is cap-
tured in the data definition language. The definition of the more specific class designates the more
general class from which attributes and operations are inherited. The more specific class defini-
tions may add specialized attributes and operations. Figure 3 shows more specific subtypes of
shape representations inheriting attributes from the general concept of shape representation.

Figure 3: Generalization / Specialization

Functions for presenting an image from a wire frame model or a solid model representation may
be associated with both these classes; however, the actual operations that present the images and
the images themselves distinctly differ based on the type of shape representation. In object-ori-
ented systems the specialized functions which implement the presentations may be attached to the
different class definitions.

Shape
representation

Solid model Wire frame
model

description

approximate
dimensions

length measurevolume measure

NATURE OF ENGINEERING DATA

17

In engineering applications, complex class hierarchies are common. Different types of data mod-
els support different types of inheritance structures. In general, conceptual models often support
more sophisticated inheritance structures than do database models. The field of conceptual model-
ing is trying to optimize representational capability with respect to information semantics (Sowa,
1991), while the database field is optimizing performance in a computing environment (Bancil-
hon, 1990). These different goals are manifested in the variety of different data models. With
respect to inheritance, for example, conceptual modeling techniques commonly provide inherit-
ance mechanisms which allow overlapping subtypes. In database systems support for this type of
inheritance is much less common since it cannot be implemented as efficiently.

Support for Constraints

In general, database management systems provide only limited support for constraints. However,
considerable research is focussed on this topic and commercial systems are likely to extend the
support that they provide in the not too distant future. Current systems support some of the types
of constraints described for conceptual designs, such as optionality and uniqueness; however,
most constraints must be maintained by each application program. Support within the database
management system will ensure that the constraints are rigorously and consistently applied.

The more complex types of constraints often require algorithms for their definition. Furthermore,
the interpretation of the constraints may differ based on the application in which they are used.
These problems make general purpose support for constraints difficult, since traditional database
languages are designed for simple data manipulations and do not have the advanced features that
programming languages support.

Two approaches to implementing complex constraints are developing. The first approach is seen
in many of the recently emerging object-oriented database management systems. These database
management systems are integrated with a programming language. The database management
system uses the data structure definition capabilities of host programming language as the data
definition language. In this approach constraints are implemented in and controlled by the same
host language. Another approach extends the database management system interface to include
the capability to initiate an external procedure from the database system. The external procedures
are written in a programming language.

While these approaches provide better support for complex constraints, they are not optimal since
they are not fully developed. Researchers in this area are looking for solutions to problems associ-
ated with inter-language sharing and control over the configuration of software in the environ-
ment. Ultimately, an integrated software system is desired.

Database Query Capability

In addition to providing representation mechanisms for storing data, database management sys-
tems also provide the mechanisms to access the data in the database. This capability is manifest in
the form of a query language or interactive database browser. Query languages permit users to
specify the retrieval of and iterate through variable-sized collections of data in the database. Engi-
neering databases require the ability to specify retrieval of complex structures; however, tradi-
tional database management system query languages do not support this need in a manner which

DATABASE MANAGEMENT SYSTEMS IN ENGINEERING

18

is easy to use. Therefore, many database management systems provide an interactive data browser
which allows the user to navigate through the data using a visual interface.

While an interactive interface is sufficient for many purposes, an easy-to-use, programmable
interface is also desirable. In the realm of object-oriented database management systems, consid-
erable research has been done to develop query languages having additional expressive power and
more friendly user interfaces. Many of these approaches are integrated with an interactive brows-
ing capability. Commercial systems incorporating the results of this research are emerging.

A database management system provides a logical interface to data which is physically stored on
a disk. Advances in data representation and access support allow applications to be developed
without regard for or consideration of how the data is stored on disk. However, the management
of physical storage is the primary concern with respect to performance. Therefore, database man-
agement systems improve performance with mechanisms to designate advantageous physical
organizations for data. Some of these mechanisms are discussed below.

The Physical Organization

The logical organization of data, as described above, enables database management systems to
provide general purpose support for complex problems. However, a sound logical organization
does not by itself guarantee fast response times for data access. Good performance is dependent
upon the physical organization of the data on disk and the expeditious use of memory. These fac-
tors are controlled by the database management system software, but most database management
systems provide mechanisms for external direction of the physical organization. Understanding
which strategies for physical organization are employed by a database management system and
what external interfaces are provided is an important aspect to consider when implementing an
engineering database.

The physical organization of data should reflect the intended use of the database. Usage informa-
tion is captured in a physical database design which guides the database management system in

• determining a physical organization of data on disk, and

• selecting complementary strategies for management of memory.

The effective use of disk and memory minimizes the computing overhead associated with disk
access and can dramatically improve the performance of database applications.

For a database system supporting many different applications, achieving good overall perfor-
mance can be an enormously complex problem (Jefferson 1980) (Teorey 1982). The problem of
developing an effective physical organization is especially difficult for engineering information
systems. In engineering applications data is not as uniform or predictable in structure as tradi-
tional applications. In addition, the amount of data needed at any given time can vary from a sin-
gle value, such as the name of a product, to a massive structure, such as the representation of a
circuit design for a computer.

The design of efficient physical organizations has been the subject of extended research and has
led to the development and refinement of highly sophisticated techniques. Future generations of

NATURE OF ENGINEERING DATA

19

database management systems may include the dynamic reorganization of data based on usage
patterns which should further improve performance. Advances in hardware technology such as
random access memory have led to the development of sophisticated techniques for managing
substantial quantities of data in memory. These techniques have produced dramatic gains in per-
formance for logically complex data.

Physical Database Design

Just as the database schema is arrived at through conceptual design, the physical organization is
determined through the process of physical database design. The goal of physical design is to
improve the overall performance of the database system by reducing the time needed to access
data and the cost of storage.

From a user’s perspective, physical design is often viewed as a collection of techniques designed
to enhance database performance by optimizing the way data is stored on physical media. This
view, however, does not always reflect the true complexity of the design task. Selecting an effi-
cient overall design requires thorough analysis of the different ways that data is used by different
applications. Additional factors, such as the hardware environment and limitations in the physical
design methods supported by the particular database management system, further complicate the
problem.

Sophisticated techniques have been developed for different aspects of physical design (March,
1983), (Carlis, 1983), (Fedorowicz, 1987), but a comprehensive methodology guaranteed to pro-
duce optimal overall designs does not exist. Tools for particular aspects of physical database
design, although limited, are becoming increasingly available, especially in CASE environments.
The effectiveness of these tools is limited by their inability to consider all the factors involved in
complex applications. At present, physical database design is done largely by people.

The implementation of a physical database design is accomplished through facilities provided in
the database language. Database management systems use many techniques to optimize their per-
formance, but most of these are hidden from the user. Only techniques which can be controlled
externally through the database language are described here. These techniques support the loca-
tion and retrieval of data by structuring the physical organization on disk and also include comple-
mentary techniques for managing memory.

One of the primary goals of physical database design is to minimize the need to access data stored
on disk. Disk access is much slower than memory access. Therefore, minimizing disk access often
results in better performance. However, many of the techniques which optimize the retrieval of
data from disk often are not optimal for updating the data. Trade-offs based on the expected use of
the data, such as whether it will be updated often, need to be considered in the physical design.

DATABASE MANAGEMENT SYSTEMS IN ENGINEERING

20

File Organization

On disk, data is stored in files. File organizations are integrated physical structures that represent
decisions about how to access and store data in files. File organizations may specify methods for:

• the location and retrieval of data from files, and

• the placement of data within files.

Database systems manage space utilization for file organizations as the amount of data grows (or
shrinks) over time. Effective management of disk space impacts file organization performance.

A complex database system has many file organizations, each of which may store data corre-
sponding to one or several interconnected classes in the database schema. The design of file orga-
nizations can be particularly difficult. The complexity of usage of data by different applications
creates trade-offs and dependencies to consider in designing file organizations (March, 1987).
Small differences in file organizations can radically effect the performance of a database system
(Wiederhold, 1987). The remainder of this section discusses file organization techniques in
greater detail.

File organizations utilize access methods to retrieve data. Access methods that facilitate a particu-
lar type of access are often less effective for other types of access. Three access methods are com-
monly supported by commercial database management systems: sequential, index, and hashing.
Sequential file access is an exhaustive item by item scan of a file. This method is efficient if a sub-
stantial portion of the file must be retrieved but is costly when locating individual items in a larger
file. Adding an index to the file allows individual items to be located and retrieved efficiently but
requires the additional overhead of maintaining a separate index structure. Hashing is a method by
which data items are located using algorithms to transform key values into physical addresses.
Hashing is effective for locating individual items but is inefficient for retrieving many items in a
single operation and may exhibit poor performance if file size increases drastically.

A good file organization can reduce the number of disk accesses needed to retrieve complex data
by the method of placement of data within physical files. Two techniques are particularly impor-
tant: clustering and segmentation. Clustering refers to the placement of related data items in close
proximity to each other. Usually, this means placing related items on the same page, since the
page is the smallest unit of physical storage read from disk (Cattell, 1992). Clustering permits effi-
cient retrieval of objects whose classes have such a strong association that are normally accessed
together. For instance, in the schema shown in Figure 1, suppose that product versions and their
corresponding work orders were frequently retrieved together but seldom accessed in other ways.
Performance could be improved by clustering instances of the entity product version with corre-
sponding instances of work order on the same page. In general, aggregate classes in the database
schema are prime candidates for clustering.

Segmentation techniques divide a class’s attributes into groups on the basis of common access.
The data for the attributes in these groups is then stored in separate segments (March, 1983). A
file organization may specify division of a physical file into several segments each of which is a
smaller file. By storing data in smaller files, good segmentation can reduce the time necessary to
access data and transfer it to memory. For instance for the entity product definition in Figure 2,

NATURE OF ENGINEERING DATA

21

suppose data for the attribute description (a potentially very long data string) is accessed sepa-
rately from (and less frequently than) other data for the other attributes. Segmenting product defi-
nition by placing the data for description in one segment and data for the remaining attributes in
another effectively creates two smaller files. Scanning the product definitions without their
descriptions requires fewer disk accesses and prevents the unnecessary transfer of their descrip-
tions from disk to memory. The application of clustering and segmentation on interrelated class
definitions can result in a physical data organization that does not resemble the conceptual data
model or the database schema.

Memory Management

Techniques for managing memory have undergone significant advances in recent years. The three
commonly used techniques discussed here are buffering, pre-fetching, and pointer swizzling. By
synchronizing these techniques with an effective physical organization, dramatic improvements in
performance can be achieved for working with large, complex engineering data. The advent of
client-server architectures has further increased overall capacity of memory. This architecture
allows an application to process data on local workstations, while the database management sys-
tem uses a different machine. This separation has resulted in greater flexibility in memory man-
agement, relieved contention for processing resources, and improved overall performance.

Buffering, or caching, of data is a technique commonly used by commercial database manage-
ment systems. A buffer, or cache, is an area in memory into which data items retrieved from disk
are placed. Overall system performance can be improved by retaining frequently retrieved data in
a buffer, thus eliminating the need for repeated disk accesses. Increases in the size of computer
memories have resulted in larger caches which in turn can handle larger numbers of complex
objects.

Another technique for enhancing the use of memory is pre-fetching. Pre-fetching is a technique
which brings data into memory before it is explicitly requested. Data to be pre-fetched can be
selected based on established usage patterns or other predetermined guidelines. For instance, an
application may request a portion of a complex object. If additional members of the aggregation
are located on the same page, a pre-fetching strategy would retrieve all these parts at the time the
initial request is made. This saves the cost of a subsequent access to the same page on disk.

Object-oriented database systems have been credited with the introduction of pointer swizzling, a
technique for improving the speed with which associations between objects can be followed in
memory. Pointer swizzling involves replacing symbolic references used on disk to maintain rela-
tionships between objects with the actual addresses at which the objects are stored in memory.
This eliminates the overhead of using address tables to follow relationships between objects.
Pointer swizzling also facilitates the transfer of swizzled objects from buffers into memory.
Pointer swizzling is particularly effective if objects are retained in memory for extended periods
of time and frequently referenced (Cattell, 1992).

The policy decisions as to when and where to use pre-fetching and pointer swizzled techniques
are made by the database management system; however, many systems provide mechanisms
which allow applications to guide these decisions.

DATABASE MANAGEMENT SYSTEMS IN ENGINEERING

22

By indexing files, clustering components of complex objects, utilizing large caches, and employ-
ing advanced techniques such as pre-fetching and pointer swizzling, the number of disk accesses
necessary to retrieve engineering can be dramatically reduced. In addition, by using these tech-
niques, data can be more efficiently managed in memory.

Summary

The design of a database system is a complex process. The techniques described above facilitate
the definition and organization of an efficient database implementation for sharing data among
engineering systems. However, the development of a database implementation is rarely as simple
as defining and organizing information in a database schema. Many other factors are involved in
an actual implementation and its maintenance.

 For instance, the results from the three steps in designing a database system — a conceptual
design, a database schema, and a physical design — may themselves become data within the data-
base system. The mappings between each layer in the database design process become important
pieces of information in maintaining the database implementation.

The setting in which the database system must operate may be very volatile. The maintenance of
the schema in a database implementation is one of the considerations. The impact of multiple
applications in the software environment leads to other considerations for the database system.
More considerations emerge from the engineering process itself. Some of the mechanisms pro-
vided by database management systems to manage the influences of these factors in the changing
software environment are discussed below.

MANAGING CHANGES

Engineering is a creative process resulting in numerous, intermediate by-products — sometimes
called engineering artifacts. The activities involved in the creation of products build on each other
and ultimately lead to a final end-product. This evolutionary nature of engineering can be greatly
aided by database technology. Database technology can support the growth of a product with
mechanisms to:

• store different versions of products or other artifacts,

• manage the evolution of the data model,

• monitor and control access to engineering data and systems, and

• integrate the information needs of multiple applications.

This section expands on these mechanisms and other considerations related to these aspects of
change.

Support for Versioning

During the course of an engineering effort, different aspects of the final product change as it
evolves. Alternatives are defined and analyzed to determine the best choices for the final product.
These variations may also produce designs for different versions of the product. Changes usually

MANAGING CHANGES

23

occur incrementally as designers explore alternatives. Therefore, recording the changes and the
history of changes is an important database management service. The versions serve as a histori-
cal record of a product’s design and may be useful at a later time for considering product and pro-
cess improvements. (Dittrich, 1988) (Katz, 1990)

Some database management systems provide mechanisms to help manage versions of data1 in the
development process. These mechanisms typically include support for

• establishing and maintaining relationships between versions,

• controlling access to different versions, and

• notifying collaborators of changes to versions.

A versioning system tracks the evolution of a product by allowing engineers to create a sequence
of distinct versions of a design or other aspects of a product. A database management system
maintains an ordering between different versions. When a version is modified in two different
ways, these alternatives can be saved as different versions creating a branch in the version hierar-
chy. Thus alternatives may be tracked using a version hierarchy. (Landis, 1986) (Chou, 1989)
(Ideally an engineer’s notebook would accompany the version hierarchy and provide the rationale
for the final choices.)

Data management operations provided by a versioning system include the ability to create new
versions and to retrieve, modify, compare, and delete versions. In addition to facilitate control of
the engineering process, some versioning systems may allow different categories of versions to be
created. For instance, a version may be classified as work in progress. These intermediate versions
may be maintained privately by individual engineers and not shared with other engineers. When
the work has progressed to a point where few changes are expected, a stable version may be cre-
ated for access by others (see “Cooperative Engineering Environment: Concurrency Control”).
Once no further changes are expected, a permanent or final version of the data can be made avail-
able for use in other activities. The database management system may control access to the differ-
ent version categories (Chou, 1989).

Another important aspect of versioning concerns the association between two objects. When one
object references another object, the reference may be to a specific, predetermined version of the
second object or it may reference a default version of that object. Often the default version is the
most recent stable version; however, sometimes, such as during preliminary design when many
different alternatives are being explored, the most recent version of the object may not be the most
suitable default. A versioning system may permit the engineer to determine or change the mode of
reference in the class definition for the object.

In a cooperative engineering environment where data is shared by many engineers, the creation of
a new version may require the engineers to be notified of the change. Approaches to change noti-
fication are divided into message-based and flag-based. Message-based notification requires that a

1. Version in the database management terminology is different from product version as defined in a concep-
tual schema. The concept of a version as managed by the database management system is independent of the
business decision of when to create a new version of a product. A version in the database management sys-
tem may be used to represent incremental changes on work in progress, regardless of whether a new version
of a product is created for the purposes of manufacturing and marketing.

DATABASE MANAGEMENT SYSTEMS IN ENGINEERING

24

message be sent in the event of an update. The message may be sent immediately or deferred until
a convenient time in order to minimize processing overhead. Flag-based notification sets a flag
and notification occurs when the data is accessed. Change notification options may also be speci-
fied in class definitions. (Chou, 1989)

The maintenance of versions impacts the performance of a database management system. Ver-
sioning operations increase processing overhead and managing versions requires more storage
space. Efficiently implemented versioning systems do not maintain a separate copy of data for
each version — instead the system stores only the changed portion of data with appropriate point-
ers to elements common between versions.

As the product progresses through each stage in the engineering process, separate copies of the
data may be stored and released as new versions. (For instance, a new version could be created
when a design is sent from engineering to manufacturing.) Business practices and policies deter-
mine when product versions are created and how they are maintained. However, the versioning
mechanisms provided by database management systems support these established policies. For
further information on version modeling in engineering databases see Katz (Katz, 1990).

Schema Evolution

Engineering is an inventive process that requires flexibility from database management systems.
Improvements to the engineering process or the introduction of new processes provide a competi-
tive advantage in industry. However, these changes may require additional types of information or
they may alter the way in which existing information is accessed. Thus the schema for an engi-
neering application needs to evolve with engineering processes. The iterative nature of the engi-
neering process involves specifying information requirements (building a schema), developing
product data to support those requirements (populating the schema), and then further refining the
requirements (evolving the schema). This last step is referred to as schema evolution.

The schema for the mouse casing product of the earlier example (Figure 1) assumes that a prod-
uct definition has a single owner who belongs to a particular organization. The organization asso-
ciated with the owner does not need to be explicitly stated in the schema since the organization is
be the same for all owners. However, Figure 4 illustrates what happens to the schema when, at
some later time, other organizations become involved in product development. Under the new
business practices, the owner of the product definition may belong to one of several organizations.
In this case the entity design owner is no longer sufficient information and a new entity is needed
to identify the organization. The product definition entity is also effected by the changes. The new
schema incorporates the new aspect of the product.

Schema evolution is a significant challenge in the field of software engineering in general and
raises additional considerations with respect to database management systems. A database man-
agement system relies on the definition of a schema both for managing data and for providing a
logical view of the data to a user. Changes to the schema impact both the organization of the data
within the system and the ability of the system to present the data to the user. In particular, data-
base systems need mechanisms and policies for addressing the issues of both data migration and
application migration. Data migration refers to the transformation of a data set to reflect changes

MANAGING CHANGES

25

Figure 4: Schema Evolution

Design
owner

Product
definition

Design
owner

Design / owner
organization

Product
definition

last name

first name

title

Original Schema

Evolved Schema

last name

first name

title

name

identifier

project

Organization

DATABASE MANAGEMENT SYSTEMS IN ENGINEERING

26

to the schema describing the data. Application migration refers to the management of the impact
that schema evolution may have on associated applications.

Schema evolution and the related issues of data migration and application migration are supported
to different degrees within a particular database management system. Generally the complete
migration to a different schema requires human intervention. A challenge to database manage-
ment systems is to provide facilities to support schema evolution by minimizing the amount of
human intervention necessary without jeopardizing the correctness of the data. For instance, in
the previous example, where an organization was added to the database, a database management
system utility could be used to associate a single organization with all the design owners in the
original database. However, if the design owners did not actually all belong to the same organiza-
tion, not only would this strategy result in incorrect data, but the results of any queries involving
the organization and the design owners would also be unreliable. While this approach would min-
imize the work needed to migrate the data to the new schema, it may not be desirable.

Analysis of the types of changes a schema may undergo is provided in several sources (Banerjee,
1987) (Spooner, 1989) (Kim, 1990) (Ahmed, 1991) (Kohout, 1992) (Zicari, 1992). Mechanisms
for implementing schema evolution are dependent on the implementation of a particular database
management system and are, therefore, beyond the scope of this article. However, the related
issues for data translation and application migration are discussed below.

Data Migration

The primary ingredient needed for data migration is a specification of a transformation which to
be performed on the data to make it compatible with the new schema. The transformations can be
encoded in an algorithm provided by the database management system, or the database manage-
ment system can provide a utility for the user to specify new data or an appropriate transformation
algorithm (Kohout, 1992) (Clark, 1992). In the example in Figure 4, a suitable transformation
would be to assign a default value to the organization associated with a design owner, since all
owners already in the database belong to the same organization. A mechanism for implementing
this transformation within the database is needed.

A secondary, but nevertheless important, concern is the timing of the transformations. There are
two approaches to this aspect of data migration. The data set can be migrated all at one time; this
approach is called immediate. In this case the transformations are applied in batch to the entire
data set, or the transformations can be performed dynamically on an as needed basis (Zdonik,
1990) (Björnerstedt, 1989). The latter approach is called deferred and may be preferable if the
data set is large, if only a portion of the data requires transformation, or if a user must provide
input to the transformation.

In the schema evolution example, an immediate migration would associate the appropriate organi-
zation with all the owners in the database using a default value as described above. However, if
the database contains designs for several years, which are no longer actively used and may never
again be needed, then this effort would be unwarranted. A deferred approach is better but the use
of a default value is not suitable using this approach, since a default value may result in incorrect
associations for new owners.

MANAGING CHANGES

27

Application Migration

Approaches to managing the impact of schema evolution on existing applications can be divided
into two categories: those which identify the areas of impact, and those which hide the impact.
Each of these approaches has advantages and disadvantages, and a robust system should support a
combination of these solutions.

The first approach is characterized by CASE systems. This strategy uses a dictionary to track and
identify which applications or parts of applications are affected by a change to the schema. The
dictionary stores a mapping between applications, the conceptual design, and the individual
classes in the database schema. Based on these mappings the dictionary can be used to determine
which applications are affected by a particular change. For instance, the schema change described
in the previous example should only affect those applications which use the entities design owner
and product definition. In addition, the dictionary can also indicate the degree of the impact of the
changes by tracking which particular attributes of an entity are used in which applications. In this
example not all applications which use the changed entities are necessarily affected by the
change; only those which involve the connection between design owner and product definition are
impacted. The dictionary can also be used to evaluate the impact of a change in the conceptual
design on the implemented database schema and thus to gauge the magnitude of the change.

The second approach of hiding the changes is characteristic of object-oriented systems. Using this
software design principle applications do not directly rely on the data in the format that it is stored
in the database. Access to the database is buffered by functions attached to class definitions called
access functions. As a schema evolves, if the class hierarchy remains unaffected and the access
functions do not change, then the applications are functionally unaffected by changes to the
schema. In the example in Figure 4, if the class which represents product definition maintains
access functions for the owner’s name, then applications using the product definition class should
not be affected by the change. However, major changes to the underlying data set may signifi-
cantly affect performance; therefore, it may be desirable to change the applications. Note that this
approach is only effective if the changes to the schema do not affect the existing class structure
(Osborn, 1989) (Narayanaswamy, 1988). In relational database systems this approach is sup-
ported by mechanisms for defining views on the data.

An additional consideration for application migration is the extent of the impact of a change on
application programs. Often changes to the schema will require one or more applications to be
modified. In addition, the data may need to be reorganized on disk. In both these situations appli-
cations are unavailable until the migration is complete. Typically, the reorganization of data on
disk affects all applications using the database.

The impact of schema evolution is buffered when the changes are hidden from applications
through the use of access functions. However, changes to the underlying physical organization of
data may even impact applications whose source code is not affected. From the application per-
spective, applications whose source code is not impacted by changes to the schema can be classi-
fied into three categories based on the degree to which they are affected by the changes. A run-
time compatible application is not affected by changes to the schema. An application which is
link-time compatible will need to be re-linked with the database system; however, the applica-
tion’s object code is not affected by the change. A compile-time compatible application must be

DATABASE MANAGEMENT SYSTEMS IN ENGINEERING

28

re-compiled before the application can reliably be used. The product development environment
will be impacted for applications which fall into one of the latter two categories. In addition, even
run-time compatible applications may be affected, if the database is shutdown during the migra-
tion.

Tools for Managing the Environment

Database technology facilitates control over the computing environment. Through the use of a
database management system a certain amount of control over the environment is maintained
through the mechanisms for data organization. Another application of database technology, repos-
itory technology, is evolving to further support control over the environment. Repository technol-
ogy integrates several other technologies for information management, such as database
management, CASE, object-oriented programming, and configuration control.

Repository technology is used to control a computing environment which may span many sys-
tems including databases and other engineering systems (Appleton, 1985) (Devlin, 1988) (Dywer,
1987). Repository systems may provide functionality, such as

• monitoring of the environment,

• impact analysis,

• process improvement, and

• workflow automation.

This technology will be essential to support interoperability between diverse software systems,
including database management systems.

Repository technology has roots in database technology through the concept of a data dictionary.
In 1977 an ANSI/SPARC database study group (Tsichritzis, 1977) described a framework for
database systems. This framework described the role of a data dictionary as being essential to
operating and maintaining a database system. In the ANSI report, a system is described in which
two people are the focal points of the information management process: an enterprise administra-
tor and a database administrator. The enterprise administrator manages a system’s conceptual
design, and the database administrator manages the database schema. In this framework these two
people keeping track of all the information about the system’s configuration using a data dictio-
nary.

Since then, database systems and computing environments have grown much more complex. A
sophisticated data dictionary is becoming an essential component to an effective computing envi-
ronment. The data dictionary contains descriptive information about conceptual designs, as well
as the correspondence between these designs and their implementations in individual database
systems (see previous section “Schema Evolution: Application Migration”). In addition, the dic-
tionary describes the software components of the computing environment, the relationships
among the components, and the relationships between the components and their users. This infor-
mation is used to control and regulate system configuration, versioning, security, protection, stor-
age, access, schema management, and data traceability for all components of the environment.

MANAGING CHANGES

29

In most existing application environments, the data dictionary is not automatically maintained,
but software which supports automated maintenance has recently been made available. The early
use of a data dictionary was to track the use of entities from a conceptual design within a database
schema. Statistics derived from the dictionary could be used to manage changes to the schema, to
optimize physical design, and to monitor usage requirements. However, the role of the dictionary
has broadened. Data dictionaries are now used to control distributed computing environments
consisting of a diverse set of software and hardware systems.

In the engineering environment a data dictionary is not only necessary, but it is also important that
the dictionary be active. In other words, the dictionary should contain the information needed to
control the environment that is supported by software which is ultimately responsible for control-
ling the environment. An active dictionary guides the work flow through an organization’s islands
of automation. The dictionary maintains the location of software and data within the distributed
environment. In addition, it maintains the process information needed to structure the work flow
through the environment.

Techniques for Schema Integration

Tools which manage the complexity of the computing environment provide mechanisms to sup-
port system interoperability; however, for systems to be fully interoperable, common terminology
must be available for sharing data. Techniques for schema integration are used to manage and
integrate diverse applications. The techniques provide a mechanism for understanding the infor-
mation needs of multiple applications, such as the applications involved in the re-engineering of
the mouse casing as describe earlier (see “Nature of Engineering Data: Conceptual Design: Appli-
cation Integration.”) In that example, in which the left mouse button was prone to breaking, three
applications needed to share data in order to correct the design flaw.

Schema integration techniques are used to produce an integrated conceptual design based on an
analysis of the semantics of the data used in different applications (Batini, 1986). The integrated
conceptual design contains the common terminology needed for interoperability between applica-
tions. The design typically serves as the basis for the schema of a shared database. However,
researchers are currently investigating mechanisms to use such a design as a basis for interfacing
multiple database systems (Breitbart, 1990) (Krishnamurthy, 1987) (Litwin, 1990).

Semantic analysis, which leads to a common terminology captured in a conceptual design, may be
divided into five steps (Batini, 1992):

• application schema definition,

• conflict identification,

• discovery of inter-schema relationships,

• schema restructuring, and

• functional evaluation.

Application schema definition results in the conceptual design corresponding to a particular appli-
cation. In order to understand the information requirements of each application, a separate con-
ceptual design may be defined for the applications that are to be integrated. These designs, or

DATABASE MANAGEMENT SYSTEMS IN ENGINEERING

30

application schemas, provide a means of communicating and understanding the information needs
for the different applications. The designs also define the scope of product data needed by a par-
ticular application.

The next two steps, conflict identification and discovery of inter-schema relationships, identify the
areas of overlap in the data needed by the different applications. The data within these areas must
be clearly and consistently defined in order to be shared by the different applications.

Conflict identification uncovers discrepancies in the way the same data is defined by different
applications. Conflicts can be divided into two categories: name conflicts and structural conflicts.

Name conflicts are the result of either synonyms or homonyms between the applications. The
names used to refer to the same real-life concepts are often different between applications. In the
example in Figure 5 the design application uses the term material type to designate requirements
for a material (e.g. heat-resistant, fire-retardant,....) based on the product’s intended usage.
Whereas the material selection application uses the same term material type to distinguish
whether the material is available locally or must be imported. For the two applications to share
data common terminology is needed.

Structural conflicts result from the same concepts being used in different ways. For example, in
the design application an enumeration of values may be associated with the valid values for mate-
rial type. Based on the intended usage of the product, these values provide guidelines for the
material to be used in the product’s construction. The analogous concept in the material selection
application will require more complex data involving several values. The material selection appli-
cation calculates a material’s thermal thresholds and pressure tolerances to determine the suitabil-
ity for its intended usage given certain environmental conditions.

The discovery of inter-schema relationships often begins with conflict identification. Often con-
flicting elements are strong clues of inter-schema relationships. Sometimes inter-schema relation-
ships are appropriate but are not pre-defined by either application. For example, an enterprise-
wide identifier for a product may not be required by the applications under consideration; how-
ever, such an identifier is extremely useful for coordinating different applications.

Schema restructuring combines the conceptual designs from different applications into a single
design. Conflicting aspects of the individual designs are resolved by defining a common terminol-
ogy and structure for the data to be used by the applications. Inter-schema relationships are
explicitly represented as concepts in the new design. The constructs described above for concep-
tual design are very useful in restructuring. Specifically, generalization allows shared concepts to
be represented abstractly but also allows them to be specialized for the different applications.

Finally, a functional evaluation of the integrated schema assures that the information needs of the
individual applications are supported by the integrated model (Mitchell, 1991). A reliable method
for evaluating the integrated schema is to demonstrate that the information needs of the individual
applications are fulfilled by the new schema. The new schema should be able to provide all the
data that was available in the independent schemas.

MANAGING CHANGES

31

Figure 5: Schema Integration

Product Design Application Material Selection Application

Integrated Application

creation date

color

material type

description

Materials
properties

reference

hardness

Product definition

creation date

color

material

description

requirements

Product definition

Material
specification

material type

treatment

Materials
properties

reference

hardness

Material
specification

material type

treatment

DATABASE MANAGEMENT SYSTEMS IN ENGINEERING

32

Schema integration techniques assist in the management and integration of diverse software sys-
tems. Combined with the mechanisms described earlier for schema evolution these techniques
may be used to introduce new applications smoothly into a software environment that uses a
shared database. The consolidation of many applications in a single database implementation
reduces data redundancy and inconsistency by allowing the applications to work from the same
set of data. However, the use of a centralized database also requires more cooperation to manage
the sharing of data. Database management facilities to support effective cooperation in this envi-
ronment are evolving. Several effective techniques which already exist are discussed in the next
section.

COOPERATIVE ENGINEERING ENVIRONMENT

Engineering is a cooperative process in which work is coordinated over an extended period of
time. In the course of a development effort, individual aspects of the product may be worked on
concurrently by several engineers or engineering teams. This situation is known as concurrent
engineering. Even when designers develop separate components, shared access to parts of the
design is required due to the interdependencies within a complex product. A database manage-
ment system allows multiple engineers to share information in a manner that preserves the consis-
tency and correctness of the underlying data. Traditional database management systems rely on
established techniques for controlling data sharing. For the engineering environment, these tech-
niques may be modified and supplemented with additional methods. In particular, concurrency
control and data distribution need special consideration in the engineering environment.

Three types of situations arise in an engineering environment in which data needs to be shared:

• within a work group of engineers,

• across the full product life cycle, and

• between enterprises involved in joint development.

An engineering work group is a small, highly specialized team whose members work together on
a specific area of product design such as solid modeling, finite element analysis, or printed circuit
board layout. These engineers are typically equipped with personal workstations. The team needs
an environment where data is stored and managed as a single unit and is accessible at any time by
any application. The data may be partitioned, replicated, and physically distributed across several
different systems. However, design changes must be maintained centrally so that new versions of
the design are easily and quickly available to all team members. In addition, the most current set
of data should be available to the team members responsible for releasing a new version of a prod-
uct design to other teams who may be working concurrently on different aspects of the product.
Team members need to work independently without concern for whether others might duplicate
or do work in conflict with their work. These engineers may need to manipulate and navigate
through entire designs or portions of designs. The techniques for concurrency control, described
below, are particularly useful for engineering teams.

Across the full product life cycle various releases of the data associated with a product are needed
during different stages of the development process. The typical process stages where data sharing
is crucial and distribution is inevitable include, but are not limited to: 1) moving from conceptual

COOPERATIVE ENGINEERING ENVIRONMENT

33

product design to detailed product design, 2) moving from design to manufacturing, and 3) mov-
ing from first prototype manufacturing to volume production. In addition, improvements to a
product’s design maybe introduced as the design is refined in the later stages of development.
These changes should be available for the next iteration of the product’s design. Thus, data also
needs to flow backwards through the product development cycle.

This environment poses special requirements for management of data security, application work
flow, work planning, configuration and version control, product release, and other issues related to
product development and life cycle. Other considerations for sharing data across the product life
cycle are the number of users and variety of applications sharing the data. To support the great
diversity of development environments involved in creating a product, techniques for managing
distributed data are being develop.

Enterprises involved in joint development projects are characterized by vendor/supplier and con-
tractor/sub-contractor relationships or collaborative development between different companies or
organizations. Within these projects data needs to be integrated both vertically (up and down a
single business organizational chain) and horizontally (between different organizations). Database
management systems provide facilities for making this possible.

Some of the ways that database management systems support cooperation in these environments
are described in the following sub-sections.

Concurrency Control

One of the primary functions of any database management system is to regulate the concurrent
use of data in a meaningful way. The concept of transaction is central to this management. A
transaction refers to a logical unit of work consisting of a series of operations, or updates, to be
performed on the data. The set of updates in a transaction must be completed as a unit for the data
to remain logically consistent. Updates are committed — saved permanently in the database — or
aborted — the data remains unchanged within the database. To prevent the introduction of incon-
sistency to the database, the updates within a transaction are made indivisible or atomic--either all
updates are committed or all are aborted.

In a multi-user database environment, many transactions may execute concurrently. If access to
data is unregulated, the actions of two transactions may interfere with each other and result in
inconsistent changes to interrelated parts of the database. To allow data to be shared and prevent
such errors from occurring, database systems manage the parallel execution of transactions
through concurrency control protocols. Concurrency control protocols prevent these errors by
causing coinciding transactions to perform their actions in a serial, or consecutive, order. (A group
of transactions executing concurrently is said to be serializable if their order is equivalent to a
serial order of execution.) These protocols may vary considerably and involve various techniques
that differ in terms of the level of data consistency they enforce, the extent of data sharing they
permit, and the speed at which they execute.

Perhaps the most widely used method of concurrency control is based on locking of data items. A
lock is placed on data to restrict access so that multiple transactions do not interfere with each
other. Two basic kinds of locks exist: read and write locks. Read locks are shared. They can be

DATABASE MANAGEMENT SYSTEMS IN ENGINEERING

34

held by several transactions and allow data to be read but not changed. Write locks are exclusive.
They are held by only one transaction and allow data to be inserted, deleted, or modified. An
unlock operation releases the locked data item for use in other transactions. Locking promotes
consistency of the database, but it limits the extent of sharing since a transaction may need to wait
to access an item which is already locked by another transaction.

Another consideration for concurrency control is the scope of data which is locked. Traditionally,
locks are implemented by database management systems either at the logical level by locking all
the instances of a class as a whole or by locking a single instance within a class, or at the operating
system level by locking the pages on which the objects are written. The breadth of the data cov-
ered by a transaction in traditional systems is confined to those units. However, these units for
locking are not as useful in the engineering environment. Consequently, alternative mechanisms
are being explored for locking sets of inter-related instances which may span multiple classes.

One well-known concurrency protocol is the two-phase locking protocol (Date, 1985) (Elmasri,
1989). In this protocol transactions lock data items to restrict access by other transactions. Serial-
izability is achieved by requiring that a transaction lock all its desired items prior to unlocking any
items. While this leaves the database in a consistent state, transactions must often wait to lock all
required data items. Because the two-phase protocol is based on the assumption that conflicts are
likely to occur, it is sometimes referred to as pessimistic concurrency control. In heavily used sys-
tems, delays can be frequent and lengthy. For the purposes of cooperative engineering, the two-
phase locking protocol is too limited because of the complex and extensive interrelationships
between the classes in the database schema.

To increase the extent of data sharing, other protocols must be employed. Optimistic concurrency
control (Kung, 1981) assumes conflicts are unlikely and permits transactions to access and modify
data in a temporary work space without placing locks. When the transaction attempts to commit
its changes, a check is made if other transactions have simultaneously modified the same data
items. If a conflict is discovered, one or more transactions may have to be delayed and resched-
uled later. While the optimistic protocol can improve performance because it eliminates the over-
head associated with locking, high volumes of transactions can result in frequent delays. In an
attempt to overcome the shortcomings of both optimistic and pessimistic approaches, other proto-
cols such as the semi-optimistic and mixed mode have been proposed. These protocols are cur-
rently being developed.

The extent of sharing also can be increased by using versioned objects (see “Support for Version-
ing”). Two or more transactions may access different versions of the same object. The database
management system may determine which version of an object should be used by a transaction.
When the selection of a version is the responsibility of the database management system, the
selection imposes additional processing overhead.

Long duration transactions (Korth, 1988) together with private databases are used for engineer-
ing systems to support prolonged activities by teams of engineers. These techniques constitute
significant advances in database technology, but also present new problems (Ranft, 1990). In con-
trast to the short transactions in traditional database management systems which are intended to
last for seconds or minutes, long duration transactions can last for hours, days, or longer.

COOPERATIVE ENGINEERING ENVIRONMENT

35

The use of private databases permits portions of a product’s data to be isolated in a smaller, more
exclusive environment, such as a local workstation, where a design team can work in isolation
using either short or long-duration transactions. Portions of a larger, central database are checked
out and place in a private database for access by a limited number of users. After work is com-
plete, the data is returned or checked in to the larger database. A lock may be placed in the central
database on data that has been checked out. A write lock ensures that no changes are made to the
data which is checked out, but does not prevent others from seeing the central data. Combined
with versioning, checkout procedures allow parallel work on a single aspect of a product’s design.

Concurrency control methods for cooperative engineering are still evolving. While the techniques
described in this section support cooperative processing to a significant extent, other concurrency
control protocols are expected to emerge that will more completely meet the needs of the engi-
neering community.

Data Distribution

The technology for managing data in a distributed working environment is extremely important
for engineering (Krishnamurthy, 1987). In engineering and manufacturing applications data needs
to be available at many physically distributed sites throughout a product’s life cycle. Engineering
involves a multitude of information sources and requires the coordination of databases from dif-
ferent disciplines, often comprising a vast number of manual or automated information processing
activities. Two aspects of data distribution which are particularly significant in engineering envi-
ronment are

• the availability of data throughout the engineering process and

• control over data during the process.

In a distributed working environment data or other components of the software environment often
exist on more than one computer systems. Distributed computing systems with databases at multi-
ple sites are connected in many different ways (Ceri, 1984). Data and other resources may or may
not be duplicated at many different sites, and the individual database management systems may
be maintained and controlled by different mechanisms and administrative policies. Heterogeneity
— the dissimilarity between the separate sites of a distributed computing system — is determined
by the combination of hardware, operating system software, and database management systems.
In a totally homogeneous environment, all of the system components are the same at all sites.

The wide range of variation between computing systems in a distributed environment presents a
significant challenge for database technology (Gupta, 1989). The environment variables, which
create difficulties in sharing data, range from different machine architectures to inconsistent ter-
minology used by different applications. Database management systems interface to complex net-
works. Databases integrate different applications’ views of data. These capabilities make data
available in a controlled manner to the many sites involved in a product’s development. Current
systems support these needs to a limited extent; however, the computing standards that will
enable a broader support for distribution are emerging (see the next section on “Standard Inter-
faces”).

DATABASE MANAGEMENT SYSTEMS IN ENGINEERING

36

Availability of Data

In an engineering environment it is important that data is available when and where it is needed.
As a product’s development progresses, data is needed in different physical locations at different
times. Many of the data sources are files, older database management systems, or stand-alone
application systems such as Computer-Aided Design packages. Such systems need to be inte-
grated into the distributed computing environment. Often a large amount of data is transferred
between engineering groups. In order to make efficient use of the resources, engineers often need
to request data in advance. Advance preparation assures that all the necessary data will be avail-
able at their work station when they are ready to work on a task.

Database management systems are developing ways of shortening this preparation time. Mecha-
nisms for reducing the effect of two factors that significantly influence the availability of data —
the location and the replication of data within the software environment — are being developed.

An important characteristic of a distributed environment is the level of visibility of the location of
the data in the system. As the visibility level decreases, the engineer needs to know less about
where data resides. Location transparency refers to the situation in which the engineers are
unaware of the physical location of the data, and a single command can access the data from mul-
tiple databases at different sites. For tightly coupled work, such as within a single engineering
work group, location transparency is highly desirable. As the need to share data expands to a
broader community, location transparency becomes more difficult to achieve and, perhaps, is even
less desirable because of security considerations. However, even within the broader community,
the database management system can be used to track the location of data within the system and
to migrate data between locations.

Another important characteristic of a distributed environment is the level of visibility of repli-
cated data. Replication transparency refers to the fact that an engineer is unaware of the data
being replicated in separate databases. The engineer may treat a replicated data item as if it were
stored as a single data item in a single database. The replication, however, needs to be coordinated
and controlled by software and database administrators to ensure consistency between the sites.
The database management system may use replication to increase the availability and reliability
of data within the system. Data replication of this type that is used exclusively by the database
management system should be completely transparent to the engineer and controlled by the data-
base management system and system administrator.

Database techniques for versioning, long duration transactions, and private databases allow the
user to control data distribution and replication within the software environment; however, addi-
tional policies are needed to determine when and where they are appropriate.

Control over Data

Another important characteristic of a distributed environment is the establishment of policies for
accessing and updating data (Fong, 1988). In an engineering environment data often needs to be
distributed among different projects, and shared data needs to be made available to several
projects. For example, an engineer performing structural analysis of a product would need access
to the complete set of material properties of the product. An engineer working on the assembly of

CONCLUSION

37

the same product would need access to a few, but not most, of the material properties. In order to
manage this environment, a control architecture needs to be established. Coordination and control
over data may be either centralized, where all decisions for managing the distributed data are
made by a system-wide data administrator, decentralized, where each local site exercises its own
policy for managing its own database, or a combination.

Distributed database management systems support control over data through schema integration
strategies which reflect and support the control architecture. A common classification of schema
integration strategies is based on the autonomy of the components (Breitbart, 1990) (Heiler,
1989). Different strategies address different levels of integration of the system components and
different levels of global services. The approaches to integration may be divided into two catego-
ries based on the source of control over the data. The first category uses a global schema to coor-
dinate data management between systems; the second category uses a more loosely defined
federated schema. A global schema approach to system integration creates one logical schema to
which all the participating systems must comply. Using the federated approach the distributed
systems maintain more autonomy, yet participate in a federation to allow partial and controlled
sharing of their data. (Heimbinger, 1985)

Whether the distribution strategy is federated or not, the distributed architecture can have differ-
ent variations (Sheth, 1990) (Fong, 1991). The most common distributed architecture is the client-
server computing model. The node that makes the database access request is referred to as a client
node, and the node that responds to the request and provides database services is referred to as the
server node. Using the client-server architecture the server node maintains control of shared data
while much of the processing and private data are distributed to the client machines. Client-server
architectures can be configured in a variety of ways ranging from single client and server to mul-
tiple servers supporting many clients. The various configurations and associated component
autonomy affect all aspects of the availability of and control over data.

The client-server architecture creates special considerations for cooperative engineering. In par-
ticular for managing shared data, locks need to be consistently maintained across client and server
nodes. Since much of the data actively being used is distributed to client machines, the database
server needs to notify the clients of lock requests and updates to the data. An additional consider-
ation involves the reliability of data if the server crashes or if access between the client and server
is disrupted. Some database management systems store locks as persistent objects in the database
so that they can be restored if the server crashes; however, this strategy incurs a significant pro-
cessing overhead that is often unnecessary.

CONCLUSION

Generalized database management systems have been in commercial use for two decades, but
they are only just beginning to be widely applied in engineering and manufacturing environments.
Research and development efforts in the data management arena continue to produce new capa-
bilities and products that are useful for engineering applications. Standards needed for systems to
interoperate in a cooperative engineering environment are also emerging. Future database man-
agement systems will provide mechanisms for sharing data about a product throughout its life-
cycle.

DATABASE MANAGEMENT SYSTEMS IN ENGINEERING

38

State of the Art of Commercial Database Products

In the 1980s relational database technology emerged. Relational systems decoupled the logical
format of data from its physical representation on disk. SQL (ISO/IEC 9579, 1991), based on the
relational approach to database management, emerged as the first widely accepted standard data-
base language and is widely used in business applications. This standard continues to evolve and
future versions are planned which will support more advanced capabilities. The existence of a
database language standard such as SQL is important for the widespread acceptance of database
technology. A standard provides a basis for testing database management systems for reliability
and security (see following section on “Database Management System Standards”. This level of
maturity in a software system is needed before these systems can become trusted components in
the workplace.

In the last decade several object-oriented database management systems, based on object-oriented
techniques, have been commercialized (Dabrowski, 1990). Surveys of object-oriented database
products and prototypes can be found in several sources (ANSI-OODBTG, 1991) (Cattell, 1991)
(ACM, 1991) (Ahmad, 1991) (Wood, 1992). Object-oriented database management systems are
designed to support engineering applications by providing many of the features described in this
article, such as richer data modeling techniques and more sophisticated versioning and transaction
capabilities. However, these systems have not yet reached the level of maturity of their predeces-
sors. Standards for these systems are under development. These standards will provide a basis for
testing their reliability and serve as a basis for widespread introduction into the workplace.

Many of the object-oriented database management systems combine the characteristics of object-
oriented programming with database management techniques (Zdonik, 1990). Two approaches to
developing object-oriented database management systems are

• to add database management system services to an object-oriented programming lan-
guage and

• to extend conventional database management systems (such as relational) to support a
broader range of functions.

Many commercial object-oriented database management systems available today have added
database services to an object-oriented programming language such as C++, common LISP, or
Smalltalk. While some of these systems do not provide much more than persistent data storage,
other systems include support for transaction management, concurrency control and recovery,
query languages, and performance techniques.

The approach of extending the conventional database management systems has focused on sup-
porting a broader range of built-in data types and graphical user-interface tools. These systems
have the benefit of being based on more mature software.

Although some commercial object-oriented database management systems are available and
many more are emerging, this technology is still in the process of rapid development and is likely
to remain so for at least the remainder of this decade. Many of the commercial systems are suit-
able for use within a work group or by isolated applications. However, many of the issues
involved in large-scale systems continue to be topics of intensive research.

CONCLUSION

39

Standard Interfaces

Simultaneous with the development of database technology has been the development of stan-
dards. The infrastructure of standards needed to support the sharing of data across the broad range
of people and systems involved in a product’s development is emerging. The trend in production
computing environments is to integrate database systems with sophisticated end-user tools for
managing a cooperative engineering environment. This trend requires interfaces between a wide
variety of software tools such as database management systems, graphical user interfaces, CASE
and other software development tools, information resource repository systems, and software
libraries in the form of mathematical subroutine packages, finite element analysis packages, and
geometry handling packages. Standard interfaces are essential for such an environment.

Today computer-aided engineering tools and database management systems, typically work in
isolation from each other. Each tool operates in its own self-contained environment. Integration of
tools and database management systems requires standard interfaces. To piece together a com-
plete suite of software tools for engineering, standard interfaces are essential. These standards
development activities are supported by numerous consortia of industrial corporations and gov-
ernment sponsored activities (Congress, 1992).

The computing standards relevant to engineering systems can be divided into two categories:
open systems and product data standards. Open systems standards provide the capability to make
connections, find information, and transmit data across the network without regard for vendor-
specific hardware and software architecture and implementations (Boland, 1991) (Rose, 1989)
(Stallings, 1990). Open system standards cover a broad range of computing technology. A subset
of the open system standards specifically address database management systems. Product data
standards provide mechanisms for communicating about the meaning and intended use for engi-
neering data (Carver, 1991). Both types of standards are necessary to fully automate the software
environment. A discussion of the aspects of these standards which specifically address data man-
agement for engineering follows.

Database Management System Standards

SQL (once referred to as Structured Query Language) is a national and international standard lan-
guage for defining and manipulating tabularly structured data1. It provides portability and interop-
erability of database definitions and database application programs among conforming
implementations (ISO/IEC 9075, 1992). The first SQL standard, in 1986, provided basic language
constructs for defining and manipulating data that is structured as tables. The initial SQL standard
focused primarily on satisfying the needs of business applications and never gained widespread
acceptance in the engineering community. Currently, the SQL standardization committees are
focusing on future extensions for meeting the requirements of engineering applications. These
extensions include many of the features described in this article.

1. SQL is a project of the ISO/IEC JTC1/SC21 — Joint Technical committee on Information Technology
(JTC1) of the International Organization for Standardization (ISO) and the International Electrotechnical
Commission (IEC), Subcommittee on Information Retrieval, Transfer and Management for Open Systems
Interconnection (SC21) — and the ANSI X3H2 Database Languages.

DATABASE MANAGEMENT SYSTEMS IN ENGINEERING

40

Remote Data Access (RDA) is an emerging standard protocol for establishing a remote connec-
tion between a database client and a database server (ISO/IEC 9579, 1991). The goal is to pro-
mote distributed processing in a client/server environment. The specification is specified in two
parts, a Generic RDA for arbitrary database connection and an SQL specialization for connecting
databases conforming to database management system with SQL.

Many groups are working to identify potential functional standards for object-oriented technol-
ogy. The groups are coming together under the umbrella of a new ANSI technical committee on
Object Information Management (ANSI-OODBTG, 1991)1. The ANSI committee was formed to
develop a reference model for object-oriented systems and to identify object-oriented services
that are suitable for standardization.

Information Resource Dictionary System (IRDS) is an emerging standard that supports repository
technology2 (ANSI X3.138 IRDS, 1988) (see the section on “Managing Changes: Tools for Man-
aging the Environment”). The services of the IRDS consist of utilities and systems necessary to
catalog, document, manage, and use information such as that contained in a conceptual design
and/or database schema. The IRDS standard specifies interfaces for a dictionary system for
recording, storing, and processing descriptions of an organization’s software resources. The first
version of IRDS is designed to support data administration functions. The next revision to the
IRDS specification is expected to support communication of information between applications
and other data management tools.

Engineering Data Standards

Several engineering data standards are emerging. These standards define structures for exchang-
ing and sharing engineering related data based on its semantics. Some of the larger activities are
described below; however, similar activities are on-going in these and other domains.

Two widely used standards for the exchange of CAD drawing and related information are DXF
(Autodesk, 1992) and the Initial Graphics Exchange Specification (IGES) (IGES5.1, 1991). DXF
is a de-facto industry standard used to exchange two-dimensional geometry. IGES supports the
exchange of more complex two-dimensional and three-dimensional line geometry, as well as non-
geometrical information. IGES-based CAD data transfer is limited. An additional mechanism is
needed to share and integrate a broader range of product information.

The emerging, international Standard for the Exchange of Product Model Data (STEP) (ISO1,
1992)3 developed as an outgrowth of the IGES standard. The United States’ effort in support of
the international standard is called PDES, Product Data Exchange using STEP.

STEP addresses the need for communicating product information at all stages in a product’s life-
cycle, covering all aspects of product description and manufacturing specifications. The funda-

1. The Object Information Management Technical Committee is ANSI X3H7.
2. IRDS is a project of ANSI’s X3H4 Technical Committee.
3. The Standard for The Exchange of Product Model Data (STEP) is a project of the International Organiza-
tion for Standardization (ISO) Technical Committee on Industrial Automation Systems (TC184) Subcom-
mittee on Industrial Data and Global Manufacturing Programming Languages (SC4). For an overview of the
standard refer to Part 1: Overview and Fundamental Principles [ISO1].

CONCLUSION

41

mental components of STEP are conceptual models of product information and standard mecha-
nisms for sharing information corresponding to such models. STEP includes the definition of a
conceptual modeling language called Express (ISO11, 1992). The first version of the standard
uses exchange files for sharing information about products. However, an effort is now underway
to define a standard mechanism for sharing such information more dynamically using database
technology. In particular, an interface for accessing an engineering database, called the Standard
Data Access Interface (ISO22, 1992), is being developed as part of this standard.

Since STEP is an outgrowth of the IGES standard, the focus for the initial version is on mechani-
cal products. However, future versions also will address other domains and a broader span of
applications than are covered in the initial version. In particular, efforts are underway to extend
STEP to support electrical products. Several existing standards for electrical products will need to
be harmonized.

One of the most established standards for electrical products is Electronic Design Interchange
Format (EDIF) [ANSI/EIA-EDIF]. The EDIF standard is a format for describing patterns for
semi-conductor chip fabrication. It supports two-dimensional graphics and interconnection infor-
mation for integrated circuits and printed circuit boards.

The Future

Databases will eventually serve as the backbone for an automated product development and man-
ufacturing environment. However, many advances in the technology and standards to support the
technology are needed to fully automate the environment. Much of the functionality described in
this article is currently available in proprietary or commercial systems; however, robust imple-
mentations incorporating many of the approaches are only just emerging.

In order for database systems to maintain and integrate large quantities of information from
numerous organizations involved in a product’s development, advances in data management tech-
niques and hardware are still needed. Some recent developments in the database area focus on
knowledge representation techniques to support reasoning, process control techniques to allow
access to systems in a distributed environment, and improvements in hardware for higher reliabil-
ity and speed of access.

Knowledge-base management system technology combines reasoning capabilities from the artifi-
cial intelligence area with database technology (Brodie, 1986) (Ullman, 1988). One thrust of the
technology is to develop mechanisms for reasoning based on data stored in a database. Research-
ers in this area are investigating how to represent and organize the information needed to extract
hypotheses or conclusions from data and how to capture and present reasoning to provide expla-

DATABASE MANAGEMENT SYSTEMS IN ENGINEERING

42

nations in support of these conclusions. Research in knowledge-base systems is leading to tech-
niques for

• reasoning based on traditional data types and relationships, and non-traditional types
of data such as spatial, temporal, auditory, and visual;

• knowledge acquisition so that knowledge will be stored along with data during a
development project;

• natural language interfaces which support dynamic explanations of the reasoning pro-
cess and more flexible interactions between the computer system and a human opera-
tor; and

• reasoning based on incomplete, uncertain, or contradictory information.

Process control techniques are important for integrating diverse systems to fully automate the
product development process. Issues involved in this area relate to inter-process communication
and system security.

Developments in hardware technology for database systems are addressing the needs for very
large databases and for access to archival data. Investigations in this area include the use of paral-
lelism and optimization techniques for searching, updating, and scanning data. Techniques for
providing faster access to data by anticipating an engineer’s information needs and for better
access strategies using parallel processing are also being explored.

Summary

The engineering process is complex and the software needed to manage it is equally complex.
However, the application of software to engineering problems is essential to providing an efficient
development environment for complex products. Industry is recognizing information manage-
ment systems as one of its most valuable resources. Database management systems play a key
role in these environments with mechanisms for providing data to the right people at the right
time. The needs of engineering applications are emphasized in the newly emerging generation of
database management systems and are a primary consideration for the development of future gen-
erations. In addition, the next generation of database management systems will be developed in
the light of the need to integrate computing systems and, thereby, provide a smooth operating
environment for tomorrow’s engineers.

Today’s database management systems provide mechanisms to manage engineering data. The
data representation capabilities of these database management systems allow engineering systems
to begin to manage data at a logical rather than physical level. Repository technology provides a
means of managing product data and other software in the environment. Advanced repository sys-
tems will also provide additional capabilities to manage changes within the engineering environ-
ment and to provide the control needed to support engineering teams and cooperative
development.

Research and standards development is on-going in the areas needed to support full-scale integra-
tion of the computing environment for manufacturing and engineering. The computing infrastruc-
ture needed to take advantage of these future systems is being developed today.

REFERENCES

43

REFERENCES

1. S. Ahmed, A. Wong, C. Sriram, R. Logcher, “A Comparison of Object-Oriented Database
Management Systems for Engineering Applications” in the Proceedings of the 7th Conference on
Computing in Civil Engineering, American Society of Civil Engineering, Washington, D.C.,
1991.

2. (ANSI/EIA-EDIF) American National Standards Institute, Electronic Industries Associa-
tion, Electronic Design Interchange Format, Document ANSI/EIA-548-1988, New York, 1988
(future versions are due out in 1992 and 1993).

3. (ANSI-IRDS88) American National Standards Institute, Information Resource Dictionary
System, Document ANSI X3.138-1988, New York, 1988. Also available as Federal Information
Processing Standards FIPS 156, April 1989.

4. (ANSI-OODBTG91) American National Standards Institute, Information Processing Sys-
tems, Database Systems Study Group, Object-Oriented Databases Task Group (ANSI X3/
DBSSG/OODBTG), Object-oriented Database Task Group Final Report, September 1991. D.

5. Appleton, “The Technology of Data Integration,” Datamation, pp. 106-116, Nov 1985.

6. Association for Computing Machinery, Communications of the ACM — Special Issue:
Next Generation Database Systems, vol. 34, no. 10, October 1991.

7. M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, S. Zdonik, “The Object-Ori-
ented Database System Manifesto,” in W. Kim et al (eds.), First International Conference on
Deductive and Object-Oriented Databases, 1989.

8. Autodesk, Inc., DXF: AutoCAD Release 12 Reference Manual, Aug 1992.

9. F. Bancilhon, P. Buneman (eds.), Advances in Database Programming Languages, ACM
Press, Addison-Wesley Publishing Company, New York, 1990.

10. F. Bancilhon, C. Delobel, P. Kanellakis (eds.), Building an Object-Oriented Database Sys-
tem, Morgan Kaufmann Publishers, San Mateo, CA, 1992.

11. J. Banerjee, W. Kim, H. J. Kim and H. F. Korth, “Semantics and Implementation of
Schema Evolution in Object-Oriented Databases”, Proceedings of the ACM SIGMOD Confer-
ence, June 1987.

12. C. Batini, S. Ceri, S. B. Navathe, Conceptual Database Design, Benjamin/Cummings
Publishing Company, Inc., Redwood City, California, 1992.

13. C. Batini, M. Lenerini, S. Navathe, “A Comparative Analysis of Methodologies for Data-
base Schema Integration,” ACM Computing Surveys, vol. 18, no. 4, Dec 1986.

DATABASE MANAGEMENT SYSTEMS IN ENGINEERING

44

14. E. Bertino, “Object-Oriented Database Management Systems: Concepts and Issues,”
Computer, April 1991.

15. A. Björnerstedt, C. Hultén, “Version Control in an Object-Oriented Architecture”, in
(Kim, 1989).

16. T. Boland, (ed.) “Working Implementation Agreements for OSI Protocols,” GOSIP 3 ref-
erence document, National Institute of Standards and Technology OSI Implementor's Workshop,
National Institute of Standards and Technology and IEEE Computer Society, December 1991.

17. A. Borgida, “Features of Languages for the Development of Information Systems at the
Conceptual Level,” IEEE Software, vol. 2, no. 1, January 1985.

18. Y. Breitbart, “Multidatabase Interoperability,” SIGMOD Record, vol. 19, no. 3, 53 - 60,
(Sept. 1990).

19. M. L. Brodie, “On the Development of Data Models,” in On Conceptual Modeling (Bro-
die, 1984).

20. M. Brodie, J. Mylopoulos (eds.), On Knowledge Base Management Systems, Springer-
Verlag, Inc., New York, NY, 1986.

21. M. Brodie, J. Mylopoulos, J. Schmidt (eds.), On Conceptual Modelling: Perspectives from
Artificial Intelligence, Databases, and Programming Languages, Springer-Verlag, New York, NY,
1984.

22. J. V. Carlis, S. T. March, “A Computer-Aided Physical Database Design Methodology,”
Computer Performance, vol. 4. no. 4., December, 1983.

23. G. P. Carver, H. M. Bloom, Concurrent Engineering Through Product Data Standards,
NISTIR 4573, National Institute of Standards and Technology, Gaithersburg, Maryland, May
1991. Also in (Jackson, 1992).

24. R. G. G. Cattell, Object Data Management, Addison-Wesley Publishing Company, Inc.
1992.

25. S. Ceri and G. Pelagatti, Distributed Databases: Principles and Systems, McGraw-Hill,
Inc. 1984.

26. T. R. Chase (ed.), Proceedings of the Sixth Annual ASME Database Symposium — Engi-
neering Data Management: Key to Integrated Product Development, American Society of
Mechanical Engineers, New York, 1992.

27. P. P. Chen, “The Entity-Relationship Model: Towards a Unified View of Data,” ACM
Transactions on Database Systems, vol. 1, no. 1, March 1976.

REFERENCES

45

28. H. T. Chou and W. Kim, “Versions and Change Notification in an Object-Oriented Data-
base System,” Proceedings of the 5th International Conference on Data Engineering, pp. 275-
281, Los Angeles, CA, 1989.

29. S. N. Clark, Transformr: A Prototype STEP Exchange File Migration Tool, NISTIR 4944,
National Institute of Standards and Technology, Gaithersburg, Maryland, October 1992.

30. U. S. Congress, Office of Technology Assessment, Global Standards: Building Blocks for
the Future, TCT-512, Government Printing Office, Washington DC, March 1992.

31. C. Dabrowski, E. Fong, D. Yang, Object Database Management Systems: Concepts and
Features, National Institute of Standards and Technology Special Publication 500-179, April
1990.

32. C. J. Date, An Introduction to Database Systems: Volume 1, Fifth Edition, Addison-Wes-
ley Publishing Company, Inc., 1990.

33. C. J. Date, An Introduction to Database Systems: Volume 2, Addison-Wesley Publishing
Company, Inc., 1985.

34. B. Devlin, P. Murphy, “An Architecture for a Business and Information System,” IBM
Systems Journal, vol. 27 no. 1 pp. 60-80, 1988.

35. K. R. Dittrich, and R. A. Lorie, “Version Support for Engineering Database Systems,”
IEEE Transactions on Software Engineering, vol. 14, no. 4, pp. 429-437, April 1988.

36. P. Dwyer, J. Larson, “Some Experiences with a Distributed Database Testbed System,”
Proceeding IEEE p. 633-648, vol. 75 no. 5, May 1987.

37. R. Elmasri, S. Navathe, Fundamentals of Database Systems. The Benjamin Cummings
Publishing Company, Inc., 1989.

38. J. L. Encarnação, R. Lindner, E. G. Schlechtendahl, Computer Aided Design: Fundamen-
tals and System Architectures, Second, Revised and Extended Edition, Springer-Verlag, Heidel-
berg, Germany, 1990.

39. J. Fedorowicz, “Database Performance Evaluation in an Indexed File Environment,” ACM
Transactions on Database Systems, vol. 12, no. 1. March, 1987.

40. E. Fong, B. K. Rosen, Guide to Distributed Database Management, National Institute of
Standards and Technology Special Publication 500-154, National Institute of Standards and Tech-
nology, Gaithersburg, Maryland, April 1988.

41. E. Fong, C. L. Sheppard, K. A. Harvill, Guide to Design, Implementation and Manage-
ment of Distributed Databases, National Institute of Standards and Technology Special Publica-
tion 500-185, National Institute of Standards and Technology, Gaithersburg, Maryland, Feb.
1991.

DATABASE MANAGEMENT SYSTEMS IN ENGINEERING

46

42. A. Gupta (ed.), Integration of Information Systems: Bridging Heterogeneous Databases,
IEEE Press, NY, 1989.

43. S. Heiler, “The Integration of Heterogeneous Computing Environments,” in chapter 6 of
Fong, E. and Goldfine, A. (eds.), Information Management Directions: the Integration Challenge,
National Institute of Standards and Technology Special Publication 500-167, September 1989.

44. D. Heimbinger, D. McLeod, “A Federated Architecture for Information Management,”
ACM Transactions on Office Information Systems, vol. 3 no. 3, July 1985.

45. R. Hull, and R. King, “Semantic Database Modeling: Survey, Applications, and Research
Issues,” ACM Computing Surveys, vol. 19 no. 3, 1987.

46. (IGES5.1) The Initial Graphics Exchange Specification (IGES), Version 5.1, IGES/PDES
Organization, National Computer Graphics Association, Fairfax, VA, September 1991.

47. (ISO/IEC 9075, 1992) International Organization for Standardization Database Language
SQL, ISO/IEC 9075:1992, American National Standards Institute, ANSI X3.135-1992, New
York, NY 10036, November 1992.

48. (ISO/IEC 9579, 1991) ISO/IEC 9579. International Organization for Standardization/Joint
Technical Committee 1, Open Systems Interconnection - Remote Database Access (RDA), Part 1:
Generic Model and Part 2: SQL Specialization, U.S. public review text, document ANSI BSR
X3.217-199x, Global Engineering Documents, Irvine, CA 92714, November 1991.

49. (ISO1, 1992) International Organization for Standardization, ISO 10303 Industrial Auto-
mation Systems and Integration— Product Data Representation and Exchange — Overview and
Fundamental Principles, Draft International Standard, ISO TC184/SC4, 1992.

50. (ISO11, 1992) International Organization for Standardization, ISO 10303 Industrial Auto-
mation Systems and Integration — Product Data Representation and Exchange — Description
Methods: The EXPRESS Language Reference Manual, Draft International Standard, ISO TC184/
SC4, 1992.

51. (ISO22, 1992) International Organization for Standardization, ISO 10303 Industrial Auto-
mation Systems and Integration — Product Data Representation and Exchange — Standard Data
Access Interface Specification, Working Draft, ISO TC184/SC4, 1992.

52. (ISO-TC97, 1987) International Organization for Standardization, Technical Committee
97: Information Processing Systems, Technical Report 9007: Information processing systems —
Concepts and terminology for the conceptual schema and the information base, 1987.

53. R. H. F. Jackson, C. T. Leondes, editors, “Three Pillars of Manufacturing”, Control and
Dynamic Systems, Volume 45: Manufacturing and Automation Systems: Techniques and Technol-
ogies, Academic Press, Inc. 1992.

54. D. K. Jefferson, “The Development and Application of Database Design Tools and Meth-
odology,” Proceedings of the Very Large Database Conference, Montreal, October 1- 3, 1980.

REFERENCES

47

55. R. H. Katz, Information Management in Engineering Design, Springer-Verlag, 1985.

56. R. H. Katz, “Toward a Unified Framework for Version Modeling in Engineering Data-
bases,” ACM Computing Surveys, vol. 22, no. 4., pp. 375-408, December 1990.

57. W. Kim, F. H. Lochovsky (eds.), Object-Oriented Concepts, Databases, and Applications,
ACM Press, NY 1989.

58. W. Kim, et al, “Architecture of the Orion Next-Generation Database System,” IEEE
Transactions on Knowledge and Data Engineering, vol. 2, no. 1, 1990.R.

59. R. Kohout, S. N. Clark, Considerations for the Transformation of STEP Physical Files,
NISTIR 4793, National Institute of Standards and Technology, Gaithersburg, Maryland, March
1992.

60. H. Korth, W. Kim, F. Bancilhon, “On Long-Duration CAD Transactions,” Information
Science, 1988. Reprinted in (Zdonik, 1990).

61. V. Krishnamurthy, Y. Su, H. Lam, M. Mitchell, E. Barkmeyer, “A Distributed Database
Architecture for an Integrated Manufacturing Facility,” Second Symposium on Knowledge-Base
Integrated Information Systems Engineering, May 1987.

62. H. T. Kung, J. T. Robinson, “On Optimistic Methods of Concurrency Control,” ACM
Transactions of Database Systems, vol. 6, no. 2, June, 1981. pp. 213-226.

63. G. S. Landis “Design Evolution and History in an Object-Oriented CAD/CAM Database,”
Proceedings of the 31st COMPCON Conference, San Francisco, CA, 1986, pp. 297-305.

64. W. Litwin, L. Mark, and N. Roussopoulos, “Interoperability of Multiple Autonomous
Databases,” ACM Computing Surveys, vol. 22, no. 3, September 1990.

65. M. Loomis, “Data Modeling - the IDEF1X Technique”, IEEE Conference on Computers
and Communications, Phoenix, Arizona, March, 1986, pp. 146-151.

66. S. T. March, “Techniques for Structuring Database Records,” ACM Computing Surveys,
vol. 15, no. 1., March, 1983.

67. S. T. March, J. V. Carlis, “On the Interdependencies Between Record Structure and Access
Path Design,” Journal of Management Information Systems, vol. 4, no. 2. Fall, 1987.

68. M. Mitchell, A Proposed Testing Methodology for STEP Application Protocol Validation,
NISTIR 4684, National Institute of Standards and Technology, Gaithersburg, Maryland, Septem-
ber 1991.

69. J. Mylopoulos, M. L. Brodie, Readings in Artificial Intelligence and Databases, Morgan
Kaufmann Publishers, Inc., San Mateo, CA, 1989.

DATABASE MANAGEMENT SYSTEMS IN ENGINEERING

48

70. K. Narayanaswamy, K. V. Bapa Rao, “An Incremental Mechanism for Schema Evolution
in Engineering Domains, Proceedings of the Fourth International Conference on Data Engineer-
ing, pp. 294-301, IEEE Computing Society Press, 1988.

71. G. Nijsen, T. Halpin, Conceptual Schema and Relational Database Design: A Fact Ori-
ented Approach, Prentice Hall, Englewood Cliffs, NJ, 1989.

72. B. Nixon, J. Mylopoulos, “Integration Issues in Implementing Semantic Data Models,” in
(Bancilhon, 1990).

73. S. Osborn, “The Role of Polymorphism in Schema Evolution in an Object-Oriented Data-
base”, IEEE Transactions on Knowledge and Data Engineering, vol. 1, no. 3, September 1989.

74. J. Peckham, F. Maryanski, “Semantic Data Models,” ACM Computing Surveys, vol. 20,
no. 3, September 1988, pp. 153-189.

75. G. Powell, R. Bhateja, “Data Base Design for Computer-Integrated Structural Engineer-
ing,” Engineering with Computers, vol. 4, no. 3, pp. 135-144, 1988.

76. Ranft, M. A., Rehm, S., and Dittrich, K. R., “How to Share Work on Shared Objects in
Design Databases,” Sixth International Conference on Data Engineering, IEEE, LA, CA, Feb
1990, p 575-583.

77. M. T. Rose, The Open Book: A Practical Perspective on OSI., Prentice Hall, Englewood
Cliffs, NJ, 1989.

78. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen, Object-Oriented Modeling
and Design, Prentice Hall, Englewood Cliffs, New Jersey, 1991.

79. J. R. Rumble, V. E. Hemple, Database Management in Science and Technology, North-
Holland, Amsterdam, 1984.

80. A. P. Sheth, J. A. Larson, “Federated Database Systems for Managing Distributed, Hetero-
geneous, and Autonomous Databases,” ACM Computing Surveys, vol. 22, no. 3, September 1990.

81. J. Smith, D. Smith, “Database Abstractions: Aggregation and Generalization,” ACM
Transactions on Database Systems, vol. 2, no. 2, June 1977, pp. 105-133.

82. D. Spooner, D. Sanderson, G. Charalambous, “A Data Translation Tool for Engineering
Systems,” Second International Conference on Data and Knowledge Systems, pp. 96-194, IEEE
Computing Society Press, 1989.

83. J. Sowa, Conceptual Structures: Information Processing in Mind and Machine, Addison-
Wesley Publishing, Reading, Massachusetts, 1984.

84. J. Sowa, Principals of Semantic Networks: Explorations in the Representation of Knowl-
edge, 1991

REFERENCES

49

85. S.M. Staley and D. C. Anderson, “Functional Specification for CAD Database,” Com-
puter-Aided Design, vol.18, no. 3, pp. 132-138, 1986.

86. W. Stallings, Handbook of Computer-Communications Standards Volume 1: The Open
System (OSI) Model and OSI-Related Standards, Macmillan, New York, NY, 1990.

87. S.Y. Su, "Modeling Integrated Manufacturing Data Using SAM*," IEEE Computer, vol.
19, no. 1, pp. 34-49, January 1986.

88. T. Teorey, J. Fry, Design of Database Structures, Prentice-Hall, Inc., Englewood Cliffs,
NJ, 1982.

89. D. Tsichritzis, A. Klug (eds.), The ANSI/X3/SPARC DBMS Framework. Report of Study
Group on Data Base Management Systems, AFIPS Press, Montvale NJ, 1977.

90. J. Ullman, Principles of Database and Knowledge-base Systems, vol. 1, Computer Sci-
ence Press, Rockville, Maryland, 1988.

91. G. Wiederhold, File Organization for Database Design, McGraw-Hill, Inc., New York,
1987.

92. C. Wood, “Choosing an Engineering Object Data Management System” in (Chase, 1992).

93. S. Zdonik, “Object-Oriented Type Evolution,” in (Bancilhon, 1990).

94. S. Zdonik, D. Maier (eds.) Readings in Object-Oriented Database Systems, Morgan Kauf-
mann Publishers, Inc., Palo Alto CA, 1990.

95. R. Zicari, “A Framework for Schema Updates in an Object-Oriented Database System,” in
(Bancilhon, 1992).

